Skip to main content
Passa alla visualizzazione normale.

GIANPIERO BUSCARINO

Graphene p-Type Doping and Stability by Thermal Treatments in Molecular Oxygen Controlled Atmosphere

  • Authors: Piazza, A.; Giannazzo, F.; Buscarino, G.; Fisichella, G.; La Magna, A.; Roccaforte, F.; Cannas, M.; Gelardi, F.M.; Agnello, S.
  • Publication year: 2015
  • Type: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/154031

Abstract

Doping and stability of monolayer low defect content graphene transferred on a silicon dioxide substrate on silicon are investigated by micro-Raman spectroscopy and atomic force microscopy (AFM) during thermal treatments in oxygen and vacuum controlled atmosphere. The exposure to molecular oxygen induces graphene changes as evidenced by a blue-shift of the G and 2D Raman bands, together with the decrease of I2D/IG intensity ratio, which are consistent with a high p-type doping (∼1013 cm-2) of graphene. The successive thermal treatment in vacuum does not affect the induced doping showing this latter stability. By investigating the temperature range 140-350 °C and the process time evolution, the thermal properties of this doping procedure are characterized, and an activation energy of ∼56 meV is estimated. These results are interpreted on the basis of molecular oxygen induced ∼1013 cm-2 p-type doping of graphene with stability energy >49 meV and postdoping reactivity in ambient atmosphere due to reaction of air molecules with oxygen trapped between graphene and substrate.