Corso di MATEMATICA E FISICA per C.T.F. - A. A. 2014/15 Modulo di Matematica – 08.09.2015

COGNON	ME NOME
Nota: no	n sempre la risposta esatta è una delle tre risposte indicate come a,b,c. In aso indicate la vostra risposta in d.
	OGNI 3 RISPOSTE ERRATE VIENE SOTTRATTO UN PUNTO
	QUESITI CON VALORE +1
suo valor concentra a) b) c) c	acentrazione di un dato farmaco nell'organismo diminuisce progressivamente, e il re è sempre pari al 65% di quello presente 12 ore prima. Indicando con C_0 la azione iniziale, la concentrazione C dopo due giorni è: 34% di C_0 7.4% di C_0 26% di C_0 18% di C_0
2–Data la	funzione $f(x) = 5e^{-x}$ se $f(x_0) = 0.2$ allora:
b) □	$x_0 = \ln(25)$ $x_0 = 2$ $x_0 = \ln(4)$
retta di e	nata del punto di intersezione tra la retta passante per i punti $(1; -3)$ $(-2; -1)$ e la quazione $x - 3y - 10 = 0$ è: $y = 2$
b)	y = -3 $y = -1/2$
	QUESITI CON VALORE +2

 $Log\left(\frac{x^2 + 10x + 16}{x - 1}\right) \le 1$

a) ∞ (-8; -2)

b) \square $(-\infty; -8) \cup (1; +\infty)$

4-Indicare l'insieme delle soluzioni della seguente disequazione:

- c) \Box (-1; 5)
- d) 🗆 _____

5-Data la seguente curva definita in forma parametrica

$$x(t) = 5\cos(2t) \qquad y(t) = 3\sin(2t)$$

la corrispondente funzione y (x) è:

- a) una circonferenza con centro nell'origine e raggio = 4
- b) \Box un'ellisse con asse maggiore = 5
- c) ∞ un'ellisse con asse minore = 6
- d) □

6-Data la funzione $f(x) = e^{\frac{x+1}{x-2}}$ l'equazione della retta tangente al grafico di f(x) nel punto di ascissa $x_0 = -1$ è:

- a) \Box 3x y + 2 = 0
- b) \Box x 2y 3 = 0
- c) \Box 4x + 3y 1 = 0
- d) ∞ x + 3y 2 = 0

QUESITI CON VALORE +3

7-La funzione $f(x) = \frac{e^x}{e^x - 1}$ presenta i seguenti punti di estremo locale:

- a) \Box un solo punto di minimo in $x = \ln(2)$
- b) ∞ nessuno, f(x) è sempre decrescente
- c) \Box un solo punto di massimo in x = 0
- d) 🗆

8-La funzione $f(x) = x^2 \ln(x)$ presenta:

- a) ∞ un solo punto di flesso in $x = \frac{1}{\sqrt{e^3}}$
- b) \Box due punti di flesso in $x = \pm 3$
- c) \Box concavità verso il basso per x< 1 e verso l'alto per x>1
- d) 🗆 _____

9-La funzione $f(x) = \frac{e^{-x}}{x}$ presenta i seguenti asintoti:

- a) \Box x = 0 x = -1 y = 2x (per $x \to \pm \infty$)
- b) ∞ x = 0 y = 0 (solo per $x \to +\infty$)
- c) \Box x = -1 y = x + 1 (per $x \to \pm \infty$)
- d) 🗆

10-La funzione $f(x) = \frac{\ln(x) - 1}{\ln(x) + 2}$ presenta i seguenti punti di estremo locale:

- a) un punto di minimo in x = 1 e un punto di massimo in x = e
- b) un solo punto di minimo in x = e
- nessuno, f(x) è sempre crescente c) ∞
- d)

$$\int_{1}^{2} \frac{x^{2}}{\sqrt{x^{3} + 8}} dx =$$

- 1/3 a)
- 5 b)
- 2/3 c) ∞
- d)

 $y y' + e^{-x} = 0$ indicarne la soluzione particolare 12-Data l'equazione differenziale corrispondente alla condizione y(0) = 1:

- a)
- b)
- $y = e^{-x}$ $y = \sqrt{e^{-2x}}$ c)
- d)

13-La derivata parziale seconda mista della funzione reale di due variabili reali $f(x; y) = x e^{xy}$ è:

a)
$$\Box$$
 $\left(\frac{\partial^2 f}{\partial x \partial y}\right) = 2y(x+1)e^{xy}$

b)
$$\Box \left(\frac{\partial^2 f}{\partial x \partial y}\right) = (x + y) e^{xy}$$

c)
$$\infty$$
 $\left(\frac{\partial^2 f}{\partial x \partial y}\right) = x (2 + xy) e^{xy}$

d)