Differential geometric LARS via cyclic coordinate descent method
- Authors: Augugliaro, L; Mineo, A; Wit, E
- Publication year: 2012
- Type: Contributo in atti di convegno pubblicato in volume
- OA Link: http://hdl.handle.net/10447/67324
Abstract
We address the problem of how to compute the coefficient path implicitly defined by the differential geometric LARS (dgLARS) method in a high-dimensional setting. Although the geometrical theory developed to define the dgLARS method does not need of the definition of a penalty function, we show that it is possible to develop a cyclic coordinate descent algorithm to compute the solution curve in a high-dimensional setting. Simulation studies show that the proposed algorithm is significantly faster than the prediction-corrector algorithm originally developed to compute the dgLARS solution curve.