Documento progettazione del Dottorato in "Tecnologie e Scienze per la salute dell'uomo" XL Ciclo

Ciclo di attivazione con procedura di accreditamento: XXXIX

Obiettivi del corso:

Il dottorato di ricerca in "Tecnologie e Scienze per la Salute dell'uomo" è stato accreditato per il ciclo XXXIX nell'AA 2022/2023 e proseguirà la sua attività nel ciclo XL sulla base delle linee programmatiche già definite dal comitato ordinatore che lo ha istituito. Verranno inoltre apportate piccole modifiche seguendo quanto risultato dai risultati delle valutazioni AVA3 in cui si è preso atto delle necessità espresse dagli studenti.

Lo scopo del Dottorato è quello di formare dottori di ricerca di elevata qualificazione nell'ambito delle Tecnologie e Scienze applicate alla Salute dell'Uomo garantendo una preparazione caratterizzata da apertura mentale, rigore metodologico e multidisciplinarietà nei settori di riferimento. Questo scopo è perseguito mediante un'intensa formazione di ricerca sperimentale in tematiche pertinenti la Fisica, Chimica, Biologia, Biotecnologie e Medicina tutte volte allo sviluppo di conoscenze applicabili alla salute dell'uomo. Le attività di ricerca così come quelle didattiche sono portate avanti, preferibilmente in sinergia da differenti gruppi coinvolti con accertate competenze scientifiche, nell'ambito di una rete consolidata di collaborazioni nazionali e internazionali che coinvolge sia il mondo accademico sia aziende ed enti di ricerca.

Gli ambiti di ricerca riguardano differenti aspetti relativi alla salute dell'uomo in vari settori attraverso ricerche di base nel campo delle nanoscienze, della biologia, biotecnologie, scienze farmaceutiche e medicina e ricerche applicate in campo industriale, alimentare, ambientale, diagnostico medico e terapeutico. Ambiti di elevato impatto che si inquadrano perfettamente con molti degli gli-SDGs dell'Agenda 2030.

I dottorandi acquisiranno competenze, capacità progettuali e realizzative tramite attività su progetti di ricerca innovativi e saranno guidati nell'organizzazione e gestione della sperimentazione scientifica. Le attività specialistiche saranno mirate allo sviluppo di senso critico, abilità sperimentali specifiche e di capacità di autogestire la ricerca in un contesto multidisciplinare e internazionale. Un significativo supporto in termini di strumentazioni e laboratori è fornito dai Dipartimenti coinvolti e da ATeN Center dell'Ateneo di Palermo (un sistema di laboratori di ricerca integrati, unico in Europa nel settore delle Tecnologie applicate alla salute dell'uomo, che offre la disponibilità di infrastrutture e apparecchiature utili dalla sintesi e caratterizzazione dei materiali fino ai test in vivo; vd. Decreto Ministeriale n. 1082 del 10.09.2021 – PNIR 2021 -2027).

Composizione del collegio ciclo XL

Docenti dell'Università degli Studi di Palermo

Abbene	Leonardo
ALDUINA	Rosa
Arrabito	Giuseppe Domenico

Baldassano	Sara
CANCEMI	Patrizia
CARADONNA	Fabio
Cavalieri	Vincenzo
CHILLURA	Delia Francesca
MARTINO	2 0.10 1 1 0.10 0.00
FEO	Salvatore
GALLO	Giuseppe
GERACI	Fabiana
GHERSI	Giulio
GIULIANO	Michela
Guarnotta	Valentina
LENTINI	Laura
LICCIARDI	Mariano
LO MEO	Paolo Maria
LUPARELLO	Claudio
MARRALE	Maurizio
MILITELLO	Valeria
PALUMBO	Fabio Salvatore
PIGNATARO	Bruno Giuseppe
PIZZOLANTI	Giuseppe
POMA	Paola
RAIMONDI	Maria Valeria
SANCATALDO	Giuseppe
TUTONE	Marco
VETRI	Valeria
VIZZINI	Aiti
Zingales	Massimiliano
ZIZZO	Maria Grazia

Docenti di Università Straniere

Prof. Antonio D'Amore, University of Pittsburgh, USA

Prof. Vito Foderà, University of Copenaghen, Denmark

Esperti esterni di cui all'art. 6, c.4

Dott. Caterina Alfano, Fondazione Ri.MED, Italia

Dott. Simone Dario Scilabra, Fondazione Ri.MED, Italia

PRINCIPALI TEMI DI RICERCA (AREE CUN 02,03,05, 06,09)

- Biofisica Molecolare;
- Fisica Medica:
- Teranostica;
- Materiali e Nanotecnologie per la salute umana;
- Biotecnologie applicate alla diagnostica e farmaceutica;
- Studio dei meccanismi di oncogenesi;
- Modelli in vivo di tossicologia e patologie e loro utilizzo nei saggi preclinici di molecole attive;
- Nutrigenetica e Nutrigenomica;
- Sviluppo e validazione di sistemi e tecnologie in ambito protesico;
- Studio dei meccanismi dell'instabilità genomica e impatto sulla salute umana;
- Sviluppo e studio di dispositivi di ingegneria dei tessuti per uso diagnostico e terapeutico;

Sbocchi occupazionali

Il dottorato in Tecnologie e Scienze per la Salute dell'uomo mira a preparare gli studenti per carriere di alto livello in ambito scientifico e tecnologico e fornendo loro le necessarie competenze sia nell'ambito della ricerca di base che applicata per sbocchi occupazionali presso imprese specializzate, Enti di ricerca e Università che operano nel campo delle Nanoscienze e delle Biotecnologie per la Salute dell'Uomo, della Teranostica e della Medicina Traslazionale.

Gli sbocchi occupazionali, sia in campo nazionale che internazionale, riguardano:

- Università e Enti di Ricerca pubblici e privati.
- Imprese che operano nel campo delle biotecnologie, delle nanotecnologie, della diagnostica, delle scienze farmaceutiche interessate allo sviluppo di: dispositivi per diagnostica molecolare e biosensori; vettori per terapia genica; sistemi cellulari per interventi diagnostici e terapeutici; proteine terapeutiche o per xenotrapianti; farmaci con monitoraggio pre-clinico; test diagnostici a base biotecnologica; analisi e sperimentazioni biotecnologiche; sviluppo e validazione di sistemi e tecnologie per la valutazione clinica in ambito protesico; analisi del microbioma per l'identificazione di microorganismi per applicazioni ecosostenibili e compatibili con la salute dell'uomo.
- Enti preposti all'elaborazione di normative sanitarie e brevettuali nel settore delle biotecnologie;
- Enti pubblici e privati di comunicazione e informazione tecnico-scientifica in campo biotecnologico e medico-molecolare.
- Strutture del Sistema Sanitario, Aziende ospedaliere e laboratori specializzati pubblici e privati;

Coerenza con gli obiettivi del PNRR

Le attività del dottorato sono a carattere altamente multidisciplinare e abbracciano più aree tematiche in linea con gli obiettivi del PNRR, principalmente nell'ambito "Salute". Inoltre, le attività di ricerca svolte nelle diverse sedi nazionali ed internazionali costituiranno un ponte per lo scambio di informazioni, risultati e competenze innescando l'innovazione tecnologica, implementando il know-how nell'ambito dell'industria biotecnologica e, a lungo termine, farmaceutica il che rende le attività coerenti anche con alcune articolazioni dell'ambito "Digitale, Industria, Aereospazio" e sulla base di un approccio One Health anche con articolazioni dell'ambito "Prodotti alimentari, bioeconomia, risorse naturali, agricoltura, ambiente".

Le attività previste favoriscono l'internazionalizzazione dell'alta formazione con un conseguente impatto economico diretto ed evidente per le aree in cui si svolgerà la ricerca, dove recentemente sono stati effettuati molti investimenti realizzati nella costruzione di infrastrutture dedicate alle nanotecnologie e alle scienze biomediche. La formazione di figure professionali di alto livello come ad esempio, ricercatori specializzati, data manager, data analyst, facility manager e knowledge exchange manager, supporterà la traslazione e divulgazione della conoscenza e l'ottimizzazione e innovazione delle attività di laboratori, piattaforme tecnologiche e grandi infrastrutture nazionali di ricerca.

I dottorandi condurranno ricerche di base ed applicate che possono permettere di affrontare nuove sfide ad ampio spettro per quanto riguarda la salute dell'uomo, tra le quali la medicina di precisione basata sulle nanotecnologie, l'analisi dei meccanismi di patologie neurodegenerative, il drug discovery e la terapia rigenerativa personalizzata di cellule e tessuti, lo sviluppo di nuovi nano- e bio-materiali smart per la salute dell'uomo insieme a quello di nuovi dispositivi ad alta sensibilità per uso diagnostico, terapeutico. In quest' ultimo ambito è fondamentale lo sviluppo di dispositivi Lab-on-chip e biosensori per lo screening *in vitro* e *in vivo* di target molecolari e cellulari specificamente legati alla salute dell'uomo. Inoltre, le tematiche trattate permettono di utilizzare al meglio le potenzialità dei sistemi informativi, degli strumenti digitali e della telemedicina per potenziare la gestione dei pazienti a distanza o in regime di assistenza domiciliare, per applicare le tecniche di intelligenza artificiale nello sviluppo di sistemi di supporto alla diagnostica per immagini.

Più specificamente le attività del dottorato sono certamente inquadrate almeno nelle tematiche individuate nelle linee guida che riguardano Diagnostica e terapie innovative nella medicina di precisione, Conseguenze e sfide dell'invecchiamento, Modelli per un'alimentazione sostenibile, Neuroscienze e neurofarmacologia.

Attività formative

Per perseguire gli obiettivi del corso è stato identificato un percorso formativo (60 CFU per anno) versatile e ad ampio respiro caratterizzato da attività che coinvolgeranno i dottorandi in un ambiente dinamico e attivo.

Oltre alle fondamentali attività sperimentali, teoriche e computazionali inerenti ai progetti di ricerca (minimo 40 CFU per ogni anno) si è previsto che gli studenti frequentino corsi tematici specialistici e seminari formativi tenuti da membri del corpo docente e scienziati di altre istituzioni per un minimo di 20 ore l'anno.

Si è scelto di non apportare variazioni significative all'offerta formativa prevista per il ciclo XXXIX che conteneva sia corsi specifici che trasversali coerenti con le attività previste e con i GSD coinvolti. Tuttavia, per garantire la fruibilità dei corsi ad un maggior numero di studenti e incentivare un percorso interdisciplinare alcuni insegnamenti sono stati separati ed è stata modificata la loro durata.

Indicazioni operative: Gli studenti devono selezionare il proprio piano di studi per l'approvazione del collegio di dottorato in accordo con il relatore principale entro 3 mesi dall'immatricolazione, scegliendo tra i corsi elencati nella seguente tabella (in lingua inglese) che comprendono lezioni e seminari formali.

Titolo	N ore	Descrizione	Titolari
Epigenetic mechanisms of gene regulation	8	The course aims to describe the main epigenetic mechanisms involved in the modulation of the different levels of the biological information flow in response to environmental cues. The most modern and relevant molecular biology techniques used in these studies will be outlined. In addition, some of the most recent discoveries in this field of advanced research will be interpreted and commented, also referring to the role of epigenetic regulation in the field of human health.	Prof. V. Cavalieri
Computational Drug Design:	10	The course aims to help the doctoral student acquire the skills necessary to understand the issues inherent in the design and development of bioactive molecules. The course will focus on computational approaches that can facilitate the identification and optimization of hits and lead compounds. The continuous discovery of new biological targets suitable for therapeutic intervention should be accompanied by a high and rapid development of newly discovered ligands or drug repurposing. From this perspective, computational approaches, such as Docking, molecular dynamics, free energy calculations, and reverse modeling represent efficient tools for obtaining information on structure-function relationships for small molecules or natural compounds. Other ligand-based approaches, such as molecular similarity fingerprints, shape methods, pharmacophoric modeling, and QSARs are also widely used in hit/lead identification and optimization. The course hinges on the objectives of the doctorate and the topics may prove valid for using these approaches in a multidisciplinary way (Applied Physics, Chemistry, Biology, Biotechnology, Medicine and Bioengineering, Chemistry and Pharmaceutical Technology).	Marco Tutone
Drug development for the pharmaceutical industry	10	The course is aimed at PhD students who wish to continue their research in the pharmaceutical industry. Lessons will focus on the application of advanced organic synthesis techniques for drug development. After the rational design of new bioactive molecules, the synthesis will be developed through the application of innovative techniques, such as microwave, click chemistry, solid-phase synthesis, and flow chemistry, and by environmentally friendly processes for the isolation and purification of new molecules (e.g. MPLC, SPE). The last part of the course will focus on the preclinical and clinical development phases of a bioactive molecule for drug approval and marketing.	Maria Valeria Raimondi

Applications of Physics to Medicine	8	The course aims to provide PhD students with general knowledge on the applications of Physics to medicine by describing the experimental procedures underlying the main medical applications and advanced diagnostic and therapy techniques. In particular, the main diagnostic techniques (such as radiography, radioscopy, computed tomography, positron emission tomography, structural and functional magnetic resonance imaging) will be introduced in both clinical and preclinical settings. The physical principles of the various techniques as well as the information provided on the structure and functionality of the various organs and tissues will be discussed. In the therapeutic field, both radiotherapy techniques with conventional beams and with hadrons and recent therapies with focused ultrasound will be presented	Prof. M. Marrale
Nanostructured systems for drug delivery: production and characterization	6	The course aims at providing basic principles on the production and characterization of nanostructured drug delivery systems. In particular, design, fabrication and characterization of nanostructured carriers for controlled drug delivery, drug targeting, and theranostics, will be discussed. Lessons will be focused on most advanced platforms applied either for therapy and bioimaging and their potential combination for theranostics. Pharmacokinetic aspects, biomaterials properties, production, synthetic and chemical functionalization and physical-chemical characterization procedures will be presented and discussed.	Prof. F.S. Palumbo Prof. M. Licciardi
Production and characterization of electrospun biomaterials for drug delivery and regenerative medicine	6	The course aims at providing theoretical and practical basis about manufacturing and chemical-physical characterization procedures of electro-spun biomaterials applied for the drug delivery and regenerative medicine purposes. Theoretical notions on the electrospinning manufacturing technique will be presented and discussed. Most advanced biomedical applications will be presented and discussed; practical sections of the manufacturing procedures will also be carried out.	Prof. F.S. Palumbo Prof. M. Licciardi
3D and Super Resolution Microscopy	18	The course addresses PhD students and aims to provide key concepts related to experimental techniques regarding advanced optical microscopy with applications to biology, biophysics, biomedicine and nanotechnologies and related research fields. The course wants to lead students to the full acquisition of knowledge and skills useful for the correct designing and implementation of experiments that involve the acquisition of volumetric and/or high spatial-resolved images (super resolution). The course, after an introduction to the fundamentals of optical microscopy, deals with the theoretical and experimental aspects concerning confocal and multiphoton fluorescence microscopy, light sheet fluorescence microscopy (LSFM) and the most advanced methods of super resolution (Stimulated	Dr. G. Sancataldo

	I		
NMR techniques for the determination on molecular and materials structure	24	emission depletion microscopy - STED, Photoactivated localization microscopy - PALM, Stochastic Optical Reconstruction Microscopy - STORM) for the observation of high-resolved three-dimensional reconstruction of living and fixed biological samples. The course aims to provide fundamental skills to identify, using the analyzed microscopy techniques, the involved molecular mechanisms of the specific experimental models of interest for students. Particular attention is due to the physical characteristics concerning the preparation of the samples for a correct three-dimensional visualization and analysis. The course also intends to provide the basis knowledge for the use of specific softwares for analyzing microscopy data and for a quantitative interpretation of the images. Furthermore, the course aims to provide transversal soft skills that result in the critical ability to independently select the appropriate experimental procedures and the suitable advanced microscopy techniques for the correct visualization of the specific sample under examination. The course is aimed at illustrating the use of modern NMR techniques for elucidating the structure of molecular compounds and for characterizing supramolecular aggregates and organic materials. It provides 24 hours of front lectures and focuses on the following topics: Introduction to NMR spectroscopy: spin theory, excitation of spinning nuclei, chemical shift. Pulse NMR techniques, nuclear relaxation and FID, pulse sequences, relaxation times and their determination. 1H NMR spectroscopy: chemical shift of 1H nuclei, magnetic anisotropy of unsaturated functional groups. Spin coupling and coupling constants, complex spin systems, magnetic equivalence and its consequences. Double resonance techniques: decoupling, polarization transfer, NOE effect and its application to stereochemistry problems. 13C NMR spectroscopy: 1H-13C decoupling and its consequences, off-resonance, inverse-gated decoupling, INEPT and DEPT techniques. Correlation Spectroscopy: homo- and heteroc	Prof. P. Lo Meo.
		- Advanced NMR techniques: 2D and 2D TOCSY, NOESY and ROESY, dynamic NMR and its applications,	
		solid-state NMR, FFC-NMR relaxometry Interpretation of combined NMR spectra.	
Fundamentals for	8	The proposed lessons are aimed at doctoral students	Prof M. G. Zizzo
approaching the use of		who intend to approach the use of animals for	Prof V. Cavalieri
animal models in		research, in order to provide the basic knowledge to	Prof G. Ghersi
preclinical research		be able to plan procedures and projects and to take	
		care of animals.	
		Course topics will focus on	
		Module I	

			I
Physical-Chemistry of Nanomaterials and	24	 National legislation on the use of animals for scientific purposes Drafting of documents for the Ministerial Authorization Request for a project involving the use of animals for scientific purposes basics of rodent biology and physiology Module II basics on zebrafish biology and physiology use of zebrafish in biomedical research Module III Generation of animal models for the study of human health The course aims to provide knowledge regarding nanotechnologies and their use in human health 	Dr. E. Piacenza
Nanomaterials and their Applications		nanotechnologies and their use in human health. These topics will be addressed in a multidisciplinary manner, emphasizing the development and optimization of bio- and eco-friendly nanomaterials and the required chemical-physical and biological properties for their safe and effective application in biomedicine. The course includes 24 hours of frontal teaching and will be structured as follows: 1) Introduction to nanotechnology, its value for human health, the difficulties in designing and optimizing nanomaterials and nanodevices for biomedical applications, and the processes used (bottom-up, top-down, and template-based) for their production. 2) Characteristics and discriminating interactions in nanomaterials compared to bulk materials. Notes on the physical-chemistry of solid surfaces and surface energy. 3) Stabilization of nanomaterials for their use: the Derjaguin, Landau, Vervey, and Overbeek (DLVO) theory of stability for colloidal systems and its extension. 4) Fundamental parameters for designing and producing nanomaterials: the importance of size and morphology for their chemical-physical and application properties. Case studies: nanoparticles, one- (nanowires and nanorods) and two-dimensional (thin films) structures, and the main formation mechanisms. 5) Techniques for the physical-chemical characterization of nanomaterials in (bio) medicine as diagnostic, theranostic, and therapeutic agents. Case studies: nanomaterials as anticancer and for tissue engineering. Notes on the toxicity and safety of using nanomaterials for human health.	
Antibacterial activity and drug-resistance	10	The course aims to provide basic knowledge of the cellular and molecular mechanisms that regulate the	Prof. R. Alduina

acquisition: cellular targets and molecular mechanisms		activity of prokaryotic cells. Some of the main natural and/or synthetic drugs used in the clinic in contrasting antibacterial infections will be presented, deepening their mechanisms of action with particular attention to cellular structures, chosen as drug targets. Some of the genetic and biochemical mechanisms underlying drug resistance will also be described during the course.	
Antitumoral activity and drug-resistance acquisition: cellular targets and molecular mechanisms	10	The course aims to provide basic knowledge of the cellular and molecular mechanisms that regulate the activity of tumoral cells. Some of the main natural and/or synthetic drugs used in the clinic in contrasting tumor growth will be presented, deepening their mechanisms of action with particular attention to cellular structures, chosen as drug targets. Some of the genetic and biochemical mechanisms underlying drug resistance will also be described during the course.	Prof. Patrizia Cancemi
Isolation and characterization of bioactive molecules and biopolymers from invertebrate animals	8	The course aims to provide PhD students general knowledge on the use of invertebrate animals for the identification of bioactive molecules (drugs, reagents, probes, peptides) and biopolymers from invertebrate organisms. The course will focus on methods and computational approaches that can facilitate the identification and optimization of bioactive molecules. - Toxins as Potential Biotools for the Development of Novel Therapeutics (Analgesic Drug, Neuroprotective Effector, Chemotherapy Drugs, Anti-Inflammatory Drugs, Adjuvant for Drug Absorption, Diagnostic Tests); Recombinant Toxins (Biotools and Drug Targets). -Venom peptides used in the treatment of neurological diseases such as epilepsy, neurodegenerative diseases such as Parkinson's and Alzheimer's, pain treatment; - Isolation and characterization of peptides with antimicrobial, antitumor and immunomodulatory activity from marine invertebrates.	Prof. A. Vizzini

	T =		5 6 6 6 1 1 1 1
Production of	6	The activities aim the doctoral students to acquire	Prof. M. Licciardi
microparticles by mini		theoretical / practical notions on the spray drying	
spray dryer Training		process, or drying by atomization, and on its	
		application for the production of solid microparticles	
		useful in the biomedical and industrial fields. The	
		activities include theoretical training on the	
		fundamentals of this technique and a practical	
		demonstration with the MINI SPRAY DRYER BUCHI B-	
		290 within AteN infrastructure. The course will	

		provide an introduction to the structural	
		characteristics and operating conditions of the spray dryer, simultaneously with the practical laboratory demonstration to produce a prototype of microparticles.	
Confocal microscopy Training	6	The training aims to provide knowledge and skills so that doctoral students can independently design and carry out simple confocal microscopy experiments (3D imaging and colocalization) using a semi-automatic microscope supplied with the Aten infrastructure, avoiding the most common artifacts.	Prof. V. Vetri
Structural Biology and its applications in Drug Discovery.	10	5 seminars lasting approximately 2 hours each The proposed cycle of seminars aims to provide students with the necessary tools for a detailed and critical analysis of the structure of proteins and macromolecular complexes, and the implications that this information has in Drug Discovery processes. The first seminar will be dedicated to the general principles of Structural Biology and the structure of proteins, and to the understanding of the physicochemical properties of amino acids, of the different levels of molecular organization in proteins, and of	Dr. C. Alfano (Fondazione Ri.Med)
		the structure/function relationship. Three seminars dedicated to the main structural investigation techniques (NMR, X-ray and cryo-EM), their applications and limits will follow. For each technique, they will be covered the basic principles, the dedicated instrumentation, sample preparation, data acquisition and analysis. A fifth seminar will be dedicated to the comparison of the three structural investigation techniques, with examples and practical considerations, and to the use of databases (PDB, EM Database, SCOP and SWISS-PROT). The rudiments for the use of software dedicated to protein visualization of structures will also be provided.	
Writing a Scientific Research Project Proposal	6	Scientific research has become more competitive year after year, and finding appropriate funding sources and writing successful project proposals are therefore a core competency for scientists. In this workshop, students will learn basic principles of good project writing, starting with identifying the suitable funding body to developing the main project idea in order to meet selection criteria. After a preliminary theoretical lecture in which best practices and mistakes to avoid in project writing will be discussed, students will deeply analyze three successful project proposals (i.e. a PON PhD studentship funded by MIUR, a Marie Curie individual fellowship funded by the EU and a research grant funded by Fondazione con il Sud). Eventually, students will review an unsuccessful application, and will be asked to pinpoint weaknesses and suggest improvements. At the end of the workshop, students will be able to: - Seek funding bodies to support research in their fields;	Dr. S. Scilabra (Fondazione Ri.Med)

	I		
		- Formulate a research hypothesis;	
		- Design an effective research plan;	
		- Write a competitive research proposal.	D 0 A 1"
Label-free	8	Electroanalytic platforms constitute an established	Dr. G. Arrabito
electrochemical		method for the investigation of biological systems.	
impedance		Researches continuously strive to develop rapid,	
spectroscopy for		highly selective and low sample consumption	
analytes detection		analytical assays based on current, charge or	
		potential related to electrochemical processes	
		involving the analyte at the electrode/electrolyte	
		interface. In this scenario, electrochemical	
		impedance spectroscopy (EIS) is gaining more and	
		more interest, as a versatile and broad scope	
		electrochemical tool, permitting in-depth analysis of	
		time-resolved electrochemical processes, based on	
		the current or potential response as a function of	
		potential or current periodic perturbation exciting the	
		electrochemical cell at frequencies typically in the 10-	
		2 Hz - 105 Hz range [1]. The system response is	
		measured as the electrochemical impedance (Z), such	
		value permitting to quantitatively analyse	
		biointerfacial characteristics of the electrode, related	
		to analytically relevant biomolecular interactions (e.g.	
		DNA aptamers-targets, antibody-antigen, cell	
		capture). Differently to classical cyclic voltammetry,	
		EIS permits measurements at predetermined	
		voltages and in the absence of probe labeling. This	
		latter feature is of particular importance since	
		labelling can affect the probes-target affinity, thus	
		making the experiments more complex and time	
		consuming. As to the laboratory activities (four	
		hours), the students will prepare and test electrodes	
		for impedance characterization in aqueous buffer for	
		biomolecules adsorption (e.g. proteins). As a second experience, they will understand how to use EIS to	
		analyse oil-in-water Pickering emulsions, obtaining an	
		electrochemical equivalent circuit based on their acquired data.	
Applications of cell	5	The seminar is divided into two parts. The first, held	Prof. M. Giuliano
culture-based models		by Dr. Paola Poma, focuses on the presentation of the	Dr. P. Poma
for the initial		three phases of clinical drug trials and subsequent	2
characterization of the		post-marketing monitoring with references on	
mechanisms of action		pharmacovigilance, phytovigilance and pharma-	
of molecules to be		coepidemiology. Preclinical studies will also be	
adopted in clinical		examined, specifying the merits and limits of the use	
trials		of animal models and presenting the alternative	
		strategies implemented in recent years.	
		Subsequently, Prof. Michela Giuliano will introduce	
		the main in vitro models for preclinical	
		experimentation. In particular, the main types of cell	
		cultures, including primary, continuous, tumor, stem	
		cells up to 3D cultures and organoids, will be	
		presented. The main assays used for the study of	
		toxicity and related biochemical pathways will be	
		described. The seminar is intended for PhD students	
		with non-biological background who use biological	
		models in their PhD research project.	

I corsi saranno tenuti in l'italiano/inglese ed è richiesto il superamento di un esame finale. La lista dei corsi e le procedure di iscrizione è riportata alla pagina web del dottorato.

Il calendario delle attività didattiche frontali specifiche del corso di dottorato in TSSU verrà definito contestualmente all'iscrizione dei dottorandi ai corsi selezionati all'inizio del ciclo e pubblicato nel sito web. Questo garantisce flessibilità e libertà di scelta per i dottorandi che potranno partecipare alla concertazione del calendario anche in previsione di impegni di tipo sperimentale e svolgimento della propria attività di ricerca all'estero.

La metodologia integrata proposta permetterà ai dottorandi di approcciarsi a nuove tematiche e di approfondire argomenti specialistici e sviluppare capacità specifiche, quali quella di scrivere un lavoro scientifico ed un progetto di ricerca, presentare risultati, valutare un manoscritto scientifico. Inoltre, è previsto che parte dell'attività di ricerca sia condotta presso istituzioni estere ad alta qualificazione per un periodo obbligatorio di almeno sei mesi. I dottorandi avranno anche a disposizione seminari formativi e training sperimentali in laboratorio e saranno coinvolti in attività di presentazione della loro ricerca nell'ambito di un workshop annuale in cui saranno invitati a tenere una discussione pubblica ed analisi critica sulle metodologie e sui risultati ottenuti. La formula del workshop attiva da due cicli ha suscitato interesse e gradimento da parte dei dottorandi coinvolti. Al workshop hanno partecipato relatori ricercatori di chiara fama internazionale sia in ambito accademico che aziendale.

In relazione alla specificità delle loro attività i dottorandi in accordo con i rispettivi tutor saranno incoraggiati a presentare i loro risultati partecipando a congressi scientifici e a scuole tematiche di alta specializzazione (e.g. summer school) di carattere nazionale ed internazionale. La partecipazione a scuole di alta formazione, congressi e workshop nazionali ed internazionali viene considerata parte dell'attività formativa della massima importanza. I dottorandi di concerto con i loro tutor selezioneranno le attività adatte a cui partecipare.

I dottorandi saranno seguiti e coadiuvati dai tutor nella stesura di report scientifici e coinvolti nella pubblicazione dei loro risultati in riviste scientifiche ad alto impatto.

Valutazione attività dei dottorandi

L'attività didattica dei dottorandi richiede la verifica tramite esami al termine di ciascun corso, mentre l'esame finale per l'ammissione all'anno successivo prevede l'analisi di una relazione presentata dal dottorando e la valutazione della presentazione mediante un seminario esteso.

Le pubblicazioni, le partecipazioni e comunicazioni a congressi, workshop e scuole saranno valutati insieme alla relazione finale per l'ammissione all'anno successivo.

Ai corsi progettati specificamente per il dottorato in "Tecnologie e Scienze per la Salute dell'uomo" si affiancheranno quelli organizzati dalla Scuola di Dottorato dell'Ateneo di Palermo, che prevede ogni primo Lunedi dei mesi pari un seminario interdisciplinare-trasversale i cui temi saranno dedicati a tematiche come la gestione della ricerca, la conoscenza dei sistemi della ricerca e dei sistemi di finanziamento, la valorizzazione e disseminazione dei risultati di ricerca, la proprietà intellettuale e i principi fondamentali di etica e integrità. Inoltre i dottorandi potranno accedere alle attività del Centro Linguistico di Ateneo (CLA)

che organizza corsi di formazione linguistica aperti ai dottorandi. Il CLA offre anche corsi di italiano per stranieri aperti agli studenti stranieri del corso di dottorato.

Note:

La discussione sugli obiettivi formativi e su come perseguirli è stata più volte affrontata in sedi istituzionali e non, e il collegio mostra una visione comune volta alla ricerca di eccellenza sia di base che applicata. Nel corso della progettazione si è tenuto conto del piano strategico di ateneo nei punti riguardanti la qualità della ricerca e dell'internazionalizzazione.

Come evidente il progetto formativo ha potenzialità di sviluppo poiché prevede attività in ambiti in continua innovazione e di frontiera tenendo conto dell'evoluzione scientifica delle quattro aree coinvolte. Il collegio si è autovalutato anche tenendo conto dei parametri bibliometrici dei singoli membri puntando all'eccellenza come evidente dal fatto che nella media i componenti sono in possesso di requisiti ben più alti di quelli minimi previsti dalla normativa vigente. Il confronto con gli stakeholders di riferimento sarà migliorato anche attraverso l'organizzazione di incontri. D'altra parte lo scambio con molti degli stakeholders di riferimento è continuo in quanto accademia e industria collaborano per la realizzazione degli obiettivi formativi. Infatti, nel corso degli anni precedenti e per il ciclo XXXIX sono state co-finanziate borse di studio da parte di aziende ed enti di ricerca pubblici e privati.

Per promuovere l'internazionalizzazione e la qualità della ricerca il collegio prevede l'obbligatorietà per i dottorandi di trascorrere un periodo di ricerca e formazione all'estero di almeno 6 mesi (anche in diverse sedi). Le attività seminariali di fine anno si svolgono in lingua inglese e la tesi dovrà essere scritta in inglese.

Inoltre sono disponibili un:

- Programma di dottorato a doppio titolo: in collaborazione con la "Faculty of Health and Medical Sciences", University of Copenhagen, per progetti di ricerca idonei con argomenti relativi alla biofisica e alle scienze farmaceutiche Rif. Prof. V. Foderà.
- Programma di dottorato in co-tutela: in collaborazione con la PhD Medical School dell'Universidad Abierta Interamericana (Buenos Aires, Rosario, Argentina) per idonei progetti di ricerca con argomenti relativi alle scienze mediche e biomediche- Rif. Prof. Fabio Caradonna

Data la natura del dottorato stesso tutti coloro che ne facciano richiesta possono agevolmente accedere al titolo di "Doctor Europeus"

Al fine di promuovere il focus sulla ricerca di eccellenza, nelle fasi di progettazione del dottorato per il ciclo XXXIX è stato stabilito che i dottorandi non possano svolgere attività di tutoraggio e didattica integrativa e che possono svolgere attività di terza missione (trasferimento scientifico, tecnologico e culturale e di trasformazione produttiva delle conoscenze con l'esclusione del conto terzi). È ovviamente possibile in relazione alla natura dell'attività che il collegio possa prendere in considerazione di autorizzare in deroga attività specifiche e strettamente attinenti con l'attività di ricerca del dottorando che possano essere di stimolo alla sua formazione per un massimo di 40 ore annuali.

Pagina web

https://www.unipa.it/dipartimenti/stebicef/dottorati/tecnologieescienzeperlasalutedelluomo

La pagina web viene aggiornata in lingua inglese e conterrà informazioni attinenti al dottorato specifiche per ogni ciclo, e alcune news. Inoltre la pagina sarà integrata con informazioni sul processo di Assicurazione della Qualità.

Processo di monitoraggio e valutazione della qualità

Il collegio di dottorato si riunisce e valuta l'attività di ricerca e l'attività formativa dei dottorandi alla fine di ogni anno accademico, inoltre alla fine di ogni ciclo, in linea con il piano strategico di ateneo, prenderà in considerazione la produzione scientifica e l'attività di divulgazione dei risultati da parte dei dottorandi, l'attività in enti esterni e le attività sperimentali in azienda o in large facilities di ricerca internazionale.

Per ogni ciclo si terranno in considerazione gli indicatori -monitorare i processi e i risultati relativi alle attività di ricerca, -didattica e -terza missione/impatto sociale. Verranno implementate procedure per l'ascolto dei dottorandi anche in relazione alle specificità delle proprie attività di ricerca e didattica nell'ambito del percorso profondamente interdisciplinare. Ciò al fine di valutare i punti di forza e di debolezza evincibili dall'analisi della rilevazione delle opinioni degli studenti di dottorato. Fondamentale è anche la continua è proficua interazione con i rappresentanti degli studenti.

L'operazione di rivalutazione del percorso formativo è stata intrapresa e tiene conto (per quanto possibile) delle opinioni e proposte di miglioramento da parte delle dottorande e dei dottorandi (sia come espresse dal rappresentante in seno al collegio, sia rilevate tramite appositi questionari dalla commissione AQ), i suggerimenti delle parti interessate interne (Corsi di Studio, Scuole di specializzazione, Master, Scuola di dottorato, Collegio dei docenti, Governance di Ateneo, Dipartimenti), il confronto nazionale e internazionale. Le parti interessate esterne saranno adeguatamente e sistematicamente consultate (anche tramite il comitato consultivo della scuola di Dottorato di recente istituzione). Il confronto con le parti interessate avverrà mediante riunioni, anche telematiche, di cui verrà redatto un verbale. Inoltre, anche al fine di valutare l'adeguatezza del percorso e delle risorse messe a disposizione dei dottorandi, verrà messo a punto un sistema di rilevazione delle opinioni dei dottori di ricerca ad un anno dal conseguimento del titolo.

Il collegio tiene in considerazione:

- percentuale di iscritti e iscritte al primo anno di Dottorato che hanno conseguito il titolo di accesso in altro Ateneo;
- percentuale di iscritti e iscritte al primo anno di Dottorato che hanno conseguito il titolo di studio di accesso all'estero;
- percentuale di dottori e dottoresse di ricerca che hanno trascorso almeno tre mesi all'estero;
- percentuale di borse di studio finanziate da Enti esterni;
- percentuale di dottori e dottoresse di ricerca che hanno trascorso almeno sei mesi del percorso formativo in Istituzioni pubbliche o private, diverse dalla sede dei Corsi di Dottorato di Ricerca (include mesi trascorsi all'estero);
- numero di prodotti della ricerca generati dai dottori e dalle dottoresse di ricerca entro un anno dalla conclusione del percorso;
 - presenza di un sistema di rilevazione delle opinioni dottorandi durante il corso e ad un anno dall'ottenimento del corso; suo utilizzo nell'ambito della riformulazione e aggiornamento del corso.