

Documento di pianificazione e di organizzazione delle attività formative Tecnologie e scienze per la salute dell'uomo ciclo XIX

Obiettivi del Corso

Il corso di dottorato è stato concepito per offrire un percorso formativo diversificato e completo, inserendo i dottorandi in un contesto dinamico e stimolante. Le attività didattiche e formative sono progettate per facilitare l'acquisizione di competenze avanzate, sia teoriche che pratiche, essenziali per il progresso dei progetti di ricerca dei dottorandi.

La pianificazione e l'organizzazione delle attività formative è stata definita dai membri del Collegio anche in seguito a consultazioni con studiosi ed esperti di alto profilo, italiani e stranieri, provenienti dal mondo accademico, dagli enti di ricerca e dalle aziende

L'obiettivo centrale del progetto è formare professionisti altamente specializzati nel campo della ricerca avanzata, sia in ambito accademico che presso enti di ricerca e aziende private impegnate nella ricerca e sviluppo.

Struttura del Percorso Formativo

- Attività di Ricerca

L'attività principale del dottorato è la ricerca, che i dottorandi svolgeranno su un progetto specifico sotto la guida del proprio tutor e con la supervisione del collegio di dottorato. Questa attività di ricerca rappresenta il cuore del percorso formativo e mira a sviluppare competenze avanzate e a contribuire significativamente all'avanzamento delle conoscenze nel campo di studio scelto.

- Attività Didattiche

Oltre alle fondamentali attività sperimentali, teoriche e computazionali inerenti ai progetti di ricerca che costituiscono il principale impegno dei dottorandi, si prevede che l'attività didattica sia strutturata nel seguente modo:

-Corsi Tematici Specialistici

I dottorandi hanno l'obbligo di frequentare corsi tematici specialistici tenuti da membri del corpo docente e scienziati di altre istituzioni, per un minimo di 20 ore all'anno.

I corsi saranno tenuti in italiano o in inglese e richiederanno il superamento di un esame finale.

La lista dei corsi e le procedure di iscrizione sono disponibili sulla pagina web del dottorato.

-Selezione del Piano di Studi

Gli studenti devono selezionare, in accordo con il proprio supervisore, il proprio piano di studi tra i

corsi, in lingua italiana o in inglese, elencati nella tabella in allegato.

Il piano di studi deve essere approvato dal collegio di dottorato entro 3 mesi dall'immatricolazione e deve includere lezioni e seminari formali.

- Calendario delle Attività

I corsi specialistici sono erogati nell'arco dell'anno accademico (1 Novembre-31 Ottobre) Le attività didattiche frontali specifiche del corso di dottorato in TSSU sono concordate con i dottorandi che devono definire il loro piano di studi in accordo con il tutor entro i primi 3 mesi dall'inizio delle loro attività. Ciò è finalizzato a garantire flessibilità e libertà di scelta per i dottorandi che potranno partecipare alla concertazione del calendario anche in previsione di impegni di tipo sperimentale e svolgimento della propria attività di ricerca all'estero.

Corsi

Titolo	N ore	Descrizione	Titolari
Epigenetic mechanisms of gene regulation	8	The course aims to describe the main epigenetic mechanisms involved in the modulation of the different levels of the biological information flow in response to environmental cues. The most modern and relevant molecular biology techniques used in these studies will be outlined. In addition, some of the most recent discoveries in this field of advanced research will be interpreted and commented, also referring to the role of epigenetic regulation in the field of human health.	Prof. V. Cavalieri
Design and	32	The course aims to make the doctoral student acquire	Prof. M. Tutone
Development of Bioactive Molecules		the skills necessary to understand the issues inherent in the design and development of bioactive molecules. The course will focus on computational approaches that can facilitate the identification and optimization of hits and lead compounds, and on the development phases of bioactive molecules (from the synthesis laboratory to clinical trials). The continuous discovery of new biological targets suitable for therapeutic intervention should be accompanied by a high and rapid development of newly discovered ligands or by drug repurposing. From this perspective, computational approaches, such as Docking, molecular dynamics, free energy calculations, and reverse modeling represent efficient tools for obtaining information on structure-function relationships for small molecules and/or natural compounds. Other ligand-based approaches, such as molecular similarity fingerprints, shape methods, pharmacophoric modeling, and QSARs are also widely used in hit/lead identification and optimization. The rational design is followed by the synthesis of the ligands through the application of innovative synthesis methods (e.g. MAOS), by the use of ecosustainable processes for the isolation and purification of new compounds (e.g. MPLC, SPE), and	Dr. V. Raimondi.

		finally by the characterization by spectroscopic techniques (e.g. NMR, IR, mass spectrometry). The last part of the course is dedicated to the preclinical (information on the mechanism of action, its efficacy, and possible toxic effects) and clinical development phases of a bioactive molecule (phase 1-4 trials), up to its approval and placing on the market. The course hinges on the objectives of the doctorate and the topics may prove valid for using these approaches in a multidisciplinary way (Applied Physics, Chemistry, Biology, Biotechnology, Medicine and Bioengineering, Chemistry and Pharmaceutical Technology).	
Applications of Physics to Medicine	8	The course aims to provide PhD students with general knowledge on the applications of Physics to medicine by describing the experimental procedures underlying the main medical applications and advanced diagnostic and therapy techniques. In particular, the main diagnostic techniques (such as radiography, radioscopy, computed tomography, positron emission tomography, structural and functional magnetic resonance imaging) will be introduced in both clinical and preclinical settings. The physical principles of the various techniques as well as the information provided on the structure and functionality of the various organs and tissues will be discussed. In the therapeutic field, both radiotherapy techniques with conventional beams and with hadrons and recent therapies with focused ultrasound will be presented	Prof. M. Marrale
Nanostructured systems for drug delivery: production and characterization	6	The course aims at providing basic principles on the production and characterization of nanostructured drug delivery systems. In particular, design, fabrication and characterization of nanostructured carriers for controlled drug delivery, drug targeting, and theranostics, will be discussed. Lessons will be focused on most advanced platforms applied either for therapy and bioimaging and their potential combination for theranostics. Pharmacokinetic aspects, biomaterials properties, production, synthetic and chemical functionalization and physical-chemical characterization procedures will be presented and discussed.	Prof. F.S. Palumbo Prof. M. Licciardi
Production and characterization of electrospun biomaterials for drug delivery and regenerative medicine	6	The course aims at providing theoretical and practical basis about manufacturing and chemical-physical characterization procedures of electro-spun biomaterials applied for the drug delivery and regenerative medicine purposes. Theoretical notions on the electrospinning manufacturing technique will be presented and discussed. Most advanced biomedical applications will be presented and	Prof. F.S. Palumbo Prof. M. Licciardi

		discussed; practical sections of the manufacturing				
		procedures will also be carried out.				
3D and Super	18	The course addresses PhD students and aims to	Dr.	G.	Sanc	ataldo
Resolution Microscopy		provide key concepts related to experimental				
		techniques regarding advanced optical microscopy				
		with applications to biology, biophysics, biomedicine				
		and nanotechnologies and related research fields.				
		The course wants to lead students to the full				
		acquisition of knowledge and skills useful for the				
		correct designing and implementation of experiments				
		that involve the acquisition of volumetric and/or high				
		spatial-resolved images (super resolution). The				
		course, after an introduction to the fundamentals of				
		optical microscopy, deals with the theoretical and				
		experimental aspects concerning confocal and				
		multiphoton fluorescence microscopy, light sheet				
		fluorescence microscopy (LSFM) and the most				
		advanced methods of super resolution (Stimulated				
		emission depletion microscopy - STED,				
		Photoactivated localization microscopy - PALM,				
		Stochastic Optical Reconstruction Microscopy -				
		STORM) for the observation of high-resolved three-				
		dimensional reconstruction of living and fixed				
		biological samples. The course aims to provide				
		fundamental skills to identify, using the analyzed				
		microscopy techniques, the involved molecular				
		mechanisms of the specific experimental models of				
		interest for students. Particular attention is due to the				
		physical characteristics concerning the preparation of				
		the samples for a correct three-dimensional				
		visualization and analysis. The course also intends to				
		provide the basis knowledge for the use of specific				
		softwares for analyzing microscopy data and for a				
		quantitative interpretation of the images.				
		Furthermore, the course aims to provide transversal				
		soft skills that result in the critical ability to				
		independently select the appropriate experimental				
		procedures and the suitable advanced microscopy				
		techniques for the correct visualization of the specific				
		sample under examination.				
NMR techniques for	24	The course is aimed at illustrating the use of modern	Prof.	Ρ.	Lo	Meo.
the determination on		NMR techniques for elucidating the structure of				
molecular and		molecular compounds and for characterizing				
materials structure		supramolecular aggregates and organic materials. It				
		provides 24 hours of front lectures and focuses on the				
		following topics:				
		- Introduction to NMR spectroscopy: spin theory,				
		excitation of spinning nuclei, chemical shift. Pulse				
		NMR techniques, nuclear relaxation and FID, pulse				
		sequences, relaxation times and their determination.				
		- 1H NMR spectroscopy: chemical shift of 1H nuclei,				
		magnetic anisotropy of unsaturated functional				
		groups. Spin coupling and coupling constants,				
		complex spin systems, magnetic equivalence and its				
		consequences. Double resonance techniques:				
	<u> </u>	consequences. Double resonance techniques.				

		decoupling, polarization transfer, NOE effect and its application to stereochemistry problems.	
		 13C NMR spectroscopy: 1H-13C decoupling and its consequences, off-resonance, inverse-gated decoupling, INEPT and DEPT techniques. 	
		- Correlation Spectroscopy: homo- and hetero- correlation, COSY, HETCOR, HMQC, HSQC, COLOC and HMBC techniques, 13C-13C correlation spectroscopy, INADEQUATE.	
		 Advanced NMR techniques: 2D and 2D TOCSY, NOESY and ROESY, dynamic NMR and its applications, solid-state NMR, FFC-NMR relaxometry. Interpretation of combined NMR spectra. 	
Fundamentals for approaching the use of animal models in preclinical research	8	The proposed lessons are aimed at doctoral students who intend to approach the use of animals for research, in order to provide the basic knowledge to be able to plan procedures and projects and to take care of animals. Course topics will focus on	Prof M. G. Zizzo Prof V. Cavalieri Prof G. Ghersi
		Module I - National legislation on the use of animals for scientific purposes - Drafting of documents for the Ministerial Authorization Request for a project involving the use of animals for scientific purposes - basics of rodent biology and physiology	
		Module II - basics on zebrafish biology and physiology - use of zebrafish in biomedical research Module III -Generation of animal models for the study of human health	
Physical-Chemistry of Nanomaterials and their Applications	24	The course aims to provide knowledge regarding nanotechnologies and their use in human health. These topics will be addressed in a multidisciplinary manner, emphasizing the development and optimization of bio- and eco-friendly nanomaterials and the required chemical-physical and biological properties for their safe and effective application in biomedicine.	Dr. E. Piacenza
		The course includes 24 hours of frontal teaching and will be structured as follows: 1) Introduction to nanotechnology, its value for human health, the difficulties in designing and optimizing nanomaterials and nanodevices for biomedical applications, and the processes used (bottom-up, top-down, and template-based) for their production. 2) Characteristics and discriminating interactions in papers of the process of the process of the process of the production.	
		nanomaterials compared to bulk materials. Notes on the physical-chemistry of solid surfaces and surface energy. 3) Stabilization of nanomaterials for their use: the Derjaguin, Landau, Vervey, and Overbeek (DLVO)	

		theory of stability for colloidal systems and its extension. 4) Fundamental parameters for designing and producing nanomaterials: the importance of size and morphology for their chemical-physical and application properties. Case studies: nanoparticles, one- (nanowires and nanorods) and two-dimensional (thin films) structures, and the main formation mechanisms. 5) Techniques for the physical-chemical characterization of nanomaterials and their properties. 6) Applications of nanomaterials in (bio) medicine as diagnostic, theranostic, and therapeutic agents. Case studies: nanomaterials such as contrast agents, cell markers, and new antimicrobials. Notes on the use of nanomaterials as anticancer and for tissue engineering. Notes on the toxicity and safety of using nanomaterials for human health.	
Antibacterial, antitumor activity and drug-resistance acquisition: cellular targets and molecular mechanisms	12	The course aims to provide basic knowledge of the cellular and molecular mechanisms that regulate the activity of prokaryotic and eukaryotic cells. Some of the main natural and / or synthetic drugs used in the clinic in contrasting antibacterial infections and tumor growth will be presented, deepening their mechanisms of action with particular attention to cellular structures, chosen as drug targets. Some of the genetic and biochemical mechanisms underlying drug resistance will also be described during the course.	Prof. P. Cancemi Prof. R. Alduina
Isolation and characterization of bioactive molecules and biopolymers from invertebrate animals	8	The course aims to provide PhD students general knowledge on the use of invertebrate animals for the identification of bioactive molecules (drugs, reagents, probes, peptides) and biopolymers from invertebrate organisms. The course will focus on methods and computational approaches that can facilitate the identification and optimization of bioactive molecules. - Toxins as Potential Biotools for the Development of Novel Therapeutics (Analgesic Drug, Neuroprotective Effector, Chemotherapy Drugs, Anti-Inflammatory Drugs, Adjuvant for Drug Absorption, Diagnostic Tests); Recombinant Toxins (Biotools and Drug Targets). -Venom peptides used in the treatment of neurological diseases such as epilepsy, neurodegenerative diseases such as Parkinson's and Alzheimer's, pain treatment;	Prof. A. Vizzini

- Isolation and characterization of peptides with antimicrobial, antitumor and immunomodulatory activity from marine invertebrates.	

Training

Training			
Production of microparticles by mini spray dryer Training	6	The activities aim the doctoral students to acquire theoretical / practical notions on the spray drying process, or drying by atomization, and on its application for the production of solid microparticles useful in the biomedical and industrial fields. The activities include theoretical training on the fundamentals of this technique and a practical demonstration with the MINI SPRAY DRYER BUCHI B-290 within AteN infrastructure. The course will provide an introduction to the structural characteristics and operating conditions of the spray dryer, simultaneously with the practical laboratory demonstration to produce a prototype of microparticles.	Prof. M. Licciardi
Confocal microscopy Training	6	The training aims to provide knowledge and skills so that doctoral students can independently design and carry out simple confocal microscopy experiments (3D imaging and colocalization) using a semi-automatic microscope supplied with the Aten infrastructure, avoiding the most common artifacts.	Prof. V. Vetri
Structural Biology and its applications in Drug Discovery.	10	The proposed cycle of seminars aims to provide students with the necessary tools for a detailed and critical analysis of the structure of proteins and macromolecular complexes, and the implications that this information has in Drug Discovery processes. The first seminar will be dedicated to the general principles of Structural Biology and the structure of proteins, and to the understanding of the physicochemical properties of amino acids, of the different levels of molecular organization in proteins, and of the structure/function relationship. Three seminars dedicated to the main structural investigation techniques (NMR, X-ray and cryo-EM), their applications and limits will follow. For each technique, they will be covered the basic principles, the dedicated instrumentation, sample preparation, data acquisition and analysis. A fifth seminar will be dedicated to the comparison of the three structural investigation techniques, with examples and practical considerations, and to the use of databases (PDB, EM Database, SCOP and SWISS-PROT). The rudiments for the use of software dedicated to protein visualization of structures will also be provided.	Dr. C. Alfano (Fondazione Ri.Med)
Writing a Scientific Research Project	6	Scientific research has become more competitive year after year, and finding appropriate funding	Dr. S. Scilabra (Fondazione

Proposal		sources and writing successful project proposals are	Ri.Med)
Γιομοσαί		therefore a core competency for scientists.	M.Weuj
		In this workshop, students will learn basic principles	
		of good project writing, starting with identifying the	
		suitable funding body to developing the main project	
		idea in order to meet selection criteria. After a	
		preliminary theoretical lecture in which best practices	
		and mistakes to avoid in project writing will be	
		discussed, students will deeply analyze three	
		successful project proposals (i.e. a PON PhD	
		studentship funded by MIUR, a Marie Curie individual	
		fellowship funded by the EU and a research grant	
		funded by Fondazione con il Sud). Eventually,	
		students will review an unsuccessful application, and	
		will be asked to pinpoint weaknesses and suggest	
		improvements. At the end of the workshop, students will be able to:	
		- Seek funding bodies to support research in their	
		fields;	
		- Formulate a research hypothesis;	
		- Design an effective research plan;	
		- Write a competitive research proposal.	
Label-free	8	Electroanalytic platforms constitute an established	Dr. G. Arrabito
electrochemical		method for the investigation of biological systems.	
impedance		Researches continuously strive to develop rapid,	
spectroscopy for		highly selective and low sample consumption	
analytes detection		analytical assays based on current, charge or	
		potential related to electrochemical processes	
		involving the analyte at the electrode/electrolyte interface. In this scenario, electrochemical	
		impedance spectroscopy (EIS) is gaining more and	
		more interest, as a versatile and broad scope	
		electrochemical tool, permitting in-depth analysis of	
		time-resolved electrochemical processes, based on	
		the current or potential response as a function of	
		potential or current periodic perturbation exciting the	
		electrochemical cell at frequencies typically in the 10-	
		2 Hz - 105 Hz range [1]. The system response is	
		measured as the electrochemical impedance (Z), such	
		value permitting to quantitatively analyse	
		biointerfacial characteristics of the electrode, related to analytically relevant biomolecular interactions (e.g.	
		DNA aptamers-targets, antibody-antigen, cell	
		capture). Differently to classical cyclic voltammetry,	
		EIS permits measurements at predetermined voltages	
		and in the absence of probe labeling. This latter	
		feature is of particular importance since labelling can	
		affect the probes-target affinity, thus making the	
		experiments more complex and time consuming. As	
		to the laboratory activities (four hours), the students	
		will prepare and test electrodes for impedance	
		characterization in aqueous buffer for biomolecules	
		adsorption (e.g. proteins). As a second experience,	
		they will understand how to use EIS to analyse oil-inwater Pickering emulsions, obtaining an	
	I	water Pickering emulsions, obtaining an	

		electrochemical equivalent circuit based on their	
		acquired data.	
Applications of cell	5	The seminar is divided into two parts. The first, held	Prof. M. Giuliano
culture-based models		by Dr. Paola Poma, focuses on the presentation of the	Dr. P. Poma
for the initial		three phases of clinical drug trials and subsequent	
characterization of the		post-marketing monitoring with references on	
mechanisms of action		pharmacovigilance, phytovigilance and pharma-	
of molecules to be		coepidemiology. Preclinical studies will also be	
adopted in clinical		examined, specifying the merits and limits of the use	
trials		of animal models and presenting the alternative	
		strategies implemented in recent years.	
		Subsequently, Prof. Michela Giuliano will introduce	
		the main in vitro models for preclinical	
		experimentation. In particular, the main types of cell	
		cultures, including primary, continuous, tumor, stem	
		cells up to 3D cultures and organoids, will be	
		presented. The main assays used for the study of	
		toxicity and related biochemical pathways will be	
		described. The seminar is intended for PhD students	
		with non-biological background who use biological	
		models in their PhD research project.	

-Altre attività Formative

-Seminari e Workshop

- I dottorandi parteciperanno a seminari formativi e training sperimentali in laboratorio.
- Saranno coinvolti in un workshop annuale per presentare la loro ricerca, discutere pubblicamente e
 analizzare criticamente le metodologie e i risultati ottenuti. I dottorandi saranno coinvolti anche
 dell'organizzazione dell'evento. La formula del workshop ha suscitato interesse e gradimento, con la
 partecipazione di relatori di fama internazionale.

-Ricerca presso Istituzioni Estere

• Parte dell'attività di ricerca sarà condotta presso istituzioni estere ad alta qualificazione per un periodo obbligatorio di almeno sei mesi.

-Partecipazione a Congressi e Scuole Tematiche

- I dottorandi, in accordo con i loro tutor, saranno incoraggiati a presentare i loro risultati a congressi scientifici e scuole tematiche di alta specializzazione, sia a livello nazionale che internazionale.
- La partecipazione a queste attività è considerata parte fondamentale della formazione.

-Pubblicazioni e Comunicazioni Scientifiche

• I dottorandi saranno supportati dai tutor nella stesura di report scientifici e nella pubblicazione dei risultati in riviste scientifiche ad alto impatto.

Verifica e Valutazione

- Esami dei Corsi
 - La verifica dell'attività didattica avverrà tramite esami al termine di ciascun corso.

-Esame Finale per l'Ammissione all'Anno Successivo

- L'esame finale per l'ammissione all'anno successivo prevede l'analisi di un report in lingua inglese presentato dal dottorando e la valutazione della presentazione mediante un seminario esteso in lingua inglese. Le sessioni pubbliche d'esame sono organizzate in modo che i tutor e almeno 6 membri del collegio ed il coordinatore siano presenti. L'esame viene calendarizzato nel periodo ottobre-novemb
- Le pubblicazioni, le partecipazioni e comunicazioni a congressi, workshop e scuole saranno valutate insieme alla relazione finale.

Collaborazioni e Supporto

-Scuola di Dottorato dell'Ateneo di Palermo

 Ai corsi specifici del dottorato si affiancheranno quelli organizzati dalla Scuola di Dottorato dell'Ateneo di Palermo, con seminari interdisciplinari su vari temi rilevanti per la ricerca e la carriera accademica. I corsi per quest'anno accademico si tengono il secondo lunedì dei mesi dispari

-Centro Linguistico di Ateneo (CLA)

• I dottorandi potranno accedere ai corsi di formazione linguistica organizzati dal CLA, che includono corsi di italiano per stranieri.

-Doctor Europeus

 Data la natura del dottorato, tutti coloro che ne facciano richiesta possono facilmente ottenere il titolo di "Doctor Europeus".