

PhD in Economics, Business and Statistics

Dipartimento di Scienze Economiche, Aziendali e Statistiche

dSEVS

Thematic Course

Academic Year	2024-25
Subject	Mortality Modelling and Forecasting
Instructor	Carlo Giovanni Camarda (Institut national d'études
	démographiques, France)
Course description	The creation of the first life table about 350 years ago was not only
Course description	a milestone in statistics but also marked the beginning of
	demography and mortality analysis. Successive approaches have
	further illuminated our understanding of mortality trends. This
	course aims to provide an introduction to both classic and modern
	techniques for modeling mortality, with particular emphasis on the
	features necessary for forecasting mortality as the final research
	goal.
	On the first day, we will cover classic parametric models. While
	survival analysis is the primary tool for handling individual data,
	many mortality models can also be expressed within this
	framework. Even for aggregate data, model estimation relies on
	survival analysis techniques. We will start by revisiting key
	concepts in survival analysis, such as observation schemes and estimation procedures, before moving on to specific models used
	in demography. We will begin with the Gompertz law of mortality
	(1825), a foundational model used by demographers and actuaries
	to simplify mortality trends across ages with a set of parameters
	that have clear and interpretable physical meanings. From there,
	we will explore other models developed over the past two
	centuries, each designed to capture age-related mortality patterns
	with a few key parameters. We will study their features, learn how
	to estimate them, assess the uncertainty around these estimates, and
	forecast mortality trends by extrapolating the time series of their
	parameters.
	On the second day, we will examine the Lee-Carter model, a
	groundbreaking approach introduced in 1992 and later generalized
	and widely used. The Lee-Carter model represents a significant
	advancement in modeling and forecasting mortality, using linear
	extrapolations of the logarithms of age-specific death rates and principal component techniques. It employs a single index
	coefficient to capture the time trend in mortality rates, with
	forecasts derived from projecting this index using standard time
	series methods. We will learn how to interpret the model's
	outcomes, discuss its strengths and limitations, and cover
	refinements and enhanced approaches for forecasting future
	mortality rates.
	While we will touch on some theoretical concepts, the course will
	be hands-on. Students will receive handouts and routines to
	reproduce all outcomes presented, and will use the statistical
	software R on publicly available demographic datasets throughout
	the course.

PhD in Economics, Business and Statistics

Dipartimento di Scienze Economiche, Aziendali e Statistiche

dS≣∧S

Learning Objectives	The course aims to equip PhD students in statistics at the DSEAS
	of the University of Palermo with skills in both theoretical and
	practical aspects of mortality modeling and forecasting. By the end
	of the course, students should be proficient in understanding and
	applying classic and modern mortality models, including the
	Gompertz law and the Lee-Carter model and its variants.
	Additionally, basic concepts in survival analysis will be reviewed,
	and students will gain practical skills in estimating and forecasting
	mortality trends using R. The course spans 2 days and includes
	lectures paired with practical, hands-on sessions.
Suggested readings	- Chapters 1-3. Preston, S. H., Heuveline, P., and Guillot, M.
	(2001). Demography. Measuring and Modeling Population
	Processes. Blackwell (available at
	https://gwern.net/doc/statistics/2001-preston-demography.pdf)
	- Chapters 1-5. Klein, J. P. and Moeschberger, M. L. Survival
	Analysis Techniques for Censored and Truncated Data. Springer
	(available at https://link.springer.com/book/10.1007/b97377)
	- Chapter 7. Lecture Notes by German Rodriguez (Princeton
	University). Available at https://grodri.github.io/glms/notes/c7.pdf
	- Basellini, U., C. G. Camarda and H. Booth (2023) Thirty years
	on: A review of the Lee–Carter method for forecasting mortality
	International Journal of Forecasting. 39. 1033-1049. Open access
Course Activity (hrs)	8 hours
Credits	
Assessment Method	Participants will be evaluated on the basis of class participation and
	possibly a talk or report
Teaching Methods	Theory classes and computer labs
Calendar	Provisional days: 16 and 17 December 2024 (mornings and
	afternoon)
Contacts	carlo-giovanni.camarda@ined.fr