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Abstract. In this paper, a numerical study on the structusehaviour of three-dimensional
cracked structures is presented. The complianceixnaitthe cracked element is given by the
sum of the compliance matrix of the intact elensrd an additional compliance matrix
which contains all the flexibilities given by theepence of the crack. Crack depth and
location are modelled as random variables in ordertake into account the unavoidable
uncertainty that always affects damaged structufesimple and accurate method for the
probabilistic characterization of the linear elastiesponse of cracked 3D frame structures
with uncertain damage is developed.

Sommario. In questo lavoro, viene presentato uno studio migmesul comportamento
strutturale di telai tridimensionali fessurati. Lraatrice di cedibilita dell'elemento fessurato é
data dalla somma della matrice di cedibilita ddéimento integro e di una matrice aggiuntiva
che contiene tutte le cedibilita date dalla presedella fessura. La profondita e la posizione
della fessura sono modellate come variabili alegtoYiene impiegato un metodo semplice e
affidabile per la caratterizzazione probabilistickella risposta elastica lineare di strutture
intelaiate 3D con danno incerto.

1 INTRODUCTION

In this study, three dimensional structures witlicked elements are considered. Crack depth
and crack location are modelled as random variallesrder to take into account the
unavoidable uncertainty that always affects damagjadctures. In the literature, the most
common procedures for the stochastic analysis rottstres with uncertain parameters are
Monte Carlo simulation (see, for example, the syrpapet) and perturbation techniques
(see, for example, the survey pdpelThe main drawbacks of these approaches arehéor
former, the high computational cost involved toabtstatistical convergence and, for the
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latter, the low accuracy as the level of uncerjaintreases. Based on the above remarks, a
computationally efficient and accurate method hesnbpresented by Di Padl@ analyse
truss structures with uncertain geometrical andhaeical properties. This approach has been
generalized for the probabilistic analysis of linedastic edge-cracked truss and frame
structures with uncertain crack features in the timensional spaé8 In this paper, the
stochastic method is applied to three-dimensionaltionacked frame structuresiming at
assessing the overall reliability. Numerical resudhow the excellent performance of the
approach to characterize accurately the structasgonse.

2 MODEL OF THE CRACKED BEAM IN 3D

Consider a linear elastic structure subjected terdenistic static loads. The response of
the generi@-th structural element is governed by the followatgiations:

e, =D,u, (compatibility), DIq, =S, (equilibrium), e, =C_q, (constitutive, (1)

whereu, is the vector of nodal displacemengg,is the vector of element deformations or
generalized strain&; is the vector of nodal forceg, is the vector of element internal forces

or generalized stresses (work conjugateefh D, and D! are the compatibility and

equilibrium matrices an€, is the compliance matrix. For the sake of simpfiadistributed
loads over the element are not considered. In alewiing we refer to Timoshenko beam-
type elements. In the three-dimensional setting,géneralized nodal displacement and force
vectorsu, andS, , respectively, of a beam element of lenbtire represented in Fig. 1.

The element deformation components are collected inthe
vectorel =[ ¢, 4, #, #. #, €, . whereg s the twist deformationg,, is the

bending curvature in the planezat node 14, is the bending curvature in the plane at

node 2,¢,, is the bending curvature in the plang at node 14,, is the bending curvature
in the planex-y at node 2 an@, is the axial elongation. The internal forces, wodkjugate

to the element deformations are defined by theovegt =[m, m, m, m m, N.
The classical relation between nodal forces andhdidplacements is obtaine8; =k u

a‘a !
with k, =D]C.'D, represents the element stiffness matrix. Nowpgetonsider an intact,
homogeneous beam with constant cross-section. dim@l@ance matrix for the intact beam is
referred asCI" . With the choice made for the components of theriral forces and

deformations, it is easy to verify that the comgite matrix, that is the inverse of the
compliance matrix, has the form:

k 0 0 O

1 k. 0 0 2)
(Ca) - ’ k 0
sym K
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Figure 1:Three-dimensional Timoshenko beam element: nodalatements and forces

where k; =GJ/| is the torsional stiffness of the beam withshear modulus); torsion
constantky is the stiffness matrix in the-z plane,k; is the stiffness matrix in the-y plane
andk,=EA/| is the axial stiffness witk elastic modulus andl cross-sectional area.

Consider now a cracked beam with rectangular csestionBxh as represented in Fig. 2.

The beam has an edge crack of deptha x h, with a non dimensional depth, located&t,

with £ non dimensional position.
y
T (crack )
_
&l -8 X

1
=l MN%Q #ENMT,M:’
D Ls. i

ah|

Figure 2: Beam element with an edge crack

Due to the presence of the crack, the element cangas are expected to increase. Local
compliance contributions due to the crack, depamdbath the dimensionless crack depth
and location. The additional compliances due to the crack&re, As . As Ay, Ay,

A, Agr and A, , that are the axial compliance related to axiatdd\, the shear

compliance related to shear for& the shear compliance related to shear f@gethe
bending compliance related to bending mombfjt the bending compliance related to
bending momenM,, the torsional compliance related to tordiye the coupled compliance
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related to shear forc® and torquélk and the coupled compliance related to axial fdi@nd
bending momeni,, respectively. The compliance matrix of the crackeam is obtained by:

C, =CI +Coc (3)

where CI' is the compliance matrix of the intact beam, whioserse is given in Eq. 2. The
local compliance contributions; related to the crack following the Paris’'s equatare

given by:
1 92 B/2 ~al (6 2 6 2 6 2 '
/1ij :EaFi)aFj, { —B/ZJ.O l:(;Kn] +[|Z:1: Klli j +m[; Klli j } dal dZ]

1 0 BI2 ra 2
_EOF?OFJ?[ _B,Z_[O(K|1+K|2+K|3+K|4+K| st K 6) 4)

+(KII1+KII2+K1I 3+K|I 4+KI 5+KI 6)2
+m( KIII1+ K“ 2+ K” 3+ KIII4 + KIII 5+ KIII 6)2 da' dz:|

where E'= E for plane stress oE'= E/(1-v?) for plane straingn = 1+v, v is the Poisson
ratio andK, are the crack stress intensity factors forlthd, Il, Il modes and fon=1,2,..,6
the load index. Note that index 1, 2, 3, 4, 5 ancbfiesponds ti, §, S, T, My and M,
respectively. Many stress intensity factors arezaer particularK,, K3, Kis, Kyiz, Kiiz, Kiia,
Kis, Kie, Kz, Kwmz2, Kps and Kye. The remaining stress intensity factors

Kin Kis: Kigo Ky 2Ky 5 andk, 4 for the current structural configuration are givermable 1.
The compliance coefficients due to the presence dfe crack are:
— 1 2 (a 2 ' _ 1 12 a 2, _ 1 2 ra 2 ,
= Ergnle (Fn () 0 A =gl (Fu (@) o 4, =5 [[(Fus (@) 02

o E (R (@) o 4 = D22 (R, (o)) om

0

3 PROBABILISTIC ANALYSIS

Let assume that the structural element is affebtedincertainties, which influence the
compliance matrix:

C,=C,(B.) (5)

where, is a vector of uncertain parameters modelled adam variables. In this paper, the
uncertain parameters are the crack depth and ¢ocakhe relation between nodal forces and

nodal displacements is3, =K ,(B,)u, . Then, according to the standard matrix assembly
procedure, equilibrium equations for the whole dtite are obtained

K(B)u=F (6)
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where K(B) is the (stochastic) structure stiffness mattxs the vector of unknown nodal
displacementdt is the vector of prescribed nodal forces #nd a random vector collecting
variablesp,. To characterize the structural response, nogalattements should be evaluated
as functions of the random variablpsby solving Eq. (6). Here, the stochastic approach

presented if® is followed.

Stress Intensity Factors Geometric Functions
_w - N 11,12 3
KIN _Kll_WFIN (a) FIN (0’)=0.278 (1+ 20’)3
a(l-a)
6M 11,12
KIMZ:KISZWFIMZ(U) FIMZ (Cy):LSZ3
V(1-a)
S 11,12 1.2841
Kusy =Ky, :Wy/z Fusy (a) Fusy (a) :ﬁ
1M 10 tan(m 12 m : 3
K, =Kie =575 2, (@) Fu (a)= ] (7557/2) ) ol /3(0.752+ 202+ 03f t sim /);)
7-9 —
KIIISZ = K|||3 :% FIIISZ (a) F”lSZ (0’) - Ztan(m /3
_ T 6,11,12 4.064 &, —
KanX - W I:|IITX (a) FIIITX (a) = ﬁ

Table 1 : Stress intensity factors

The basic idea is to split the element complianegriminto a deterministic pa.’ and

an additional par€,” affected by uncertainty:

C.(B.)=C3+C%(B.)

(7)

Superscript 0 is used for deterministic quantitisdile superscriptf for random
quantities. In the linear elastic framework, theicture is subdivided into two systems. The
first system is a (reference) deterministic streetsubjected to the prescribed loddsnd

ruled by the equationsK °u® =F,

q°=G%° , that can be easily solved H and q° by

means of standard procedures. The second systéhe isame deterministic structure but

subjected toF ' instead ofF: K°u’ =F”,

9’ =GU’ +R” .

Thus, by means of the

superposition principle, the expressionsi@ndq for the original structure take the form:

u:u°+uﬁ, q:q0+qﬁ

(8)

The following expansion for the internal force \aag and for the displacement vecior

of the original structure are obtained:

- (we) o

=/

j=0

u:u°+UL”{

>

i=0

) [

(9)
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4 APPLICATIONS

Consider the multi-cracked frame structure showiri;n 3. For comparison, the results of
direct Monte Carlo simulation are considered. ThkoWing data are assumed: I= 3 m,
A=Bxh= 0.2x0.2 m, E= 30000 N/mm#:0.3 and f=100 KN. The results are normalized with
respect to the solution of the reference determneonfiguration. Both the location and the
depth of the cracks in beams 1, 2, 3 and 4 arertain. All the uncertain parameters are
assumed to be independent and uniformly distributesl crack location varies in the range

&.,5,0[0,0.3 and the crack depths in the rangg, ;,0[0,0.§ .

fy A
)
—>
>
cracked
beam @
™ cracked
beam 2
B
cracked / L] L]
beam @
~w{_cracked
beam @

@ @

Figure 3. Three-dimensional cracked frame structure
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Figure 4: PDFs of the normalized horizontal disptaent at node A with a) one term and b) two ternthé
series

Notice that the crack are assumed to remain openperform the analysis, the reference
deterministic configuration should be preliminasglexted according to criterion presented
in®®. The optimal choice results §/=0.03 anda®=0.5067. The probability density function
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for the normalized horizontal displacemant/u,, at node A is reported in Fig. 4. From

these figures it can be seen how employing justtena in the series, Eq. (9), the present
method is able to reproduce the results given kyMionte Carlo simulation represented by
the dotted lines. In Fig. 5, the probability depsitinctions for the normalized bending
moment nymyo at node B are represented. As it is expected, teones in the series, Eq. (9),
are needed to reproduce the Monte Carlo simulaésalts.

The comparison with classical Monte Carlo simulatevidences, for multi-cracked frame
structures, the remarkable accuracy of the presgmtoach. Another example is considered
with the following data: I= 3 m, A=BxH= 0.2x0.2 a7 30000 N/mm2?y=0.2 and =100 KN.
Both the location and the depth of the two cracks assumed to be independent and
uniformly distributed in the rangez, ,0[0.7,] and &, ,0[0,0.4 .

The results are normalized with respect to the tewluof the reference deterministic
configuration that is characterized BY0.97,a°=0.5067. The predicted distributions for the
normalized axial displacement and force at node ré @ported in Fig. 6 a) and b),
respectively. Again, the comparison with classiklinte Carlo simulation evidences, the
remarkable accuracy of the present approach.
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Figure 5: PDFs of the normalized bending momenbae B with a) one term, b) two, c) three and d terms

in the series.
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Figure 6: PDFs of the normalized axial a) displagethand b) force at node A
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