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Abstract. In this paper non-stationary dynamic analysis ofelirly elastic structures
involving uncertainties in material and/or in gedneal parameters has been reported in the
framework of the virtual distortion method (VDM)y Buch a representation the statistics of
the response may be obtained, explicitly, in teofthe statistics of the random parameters.
The method have been extended also to the analiysiscertain structures in presence of
random external excitations providing the statstt the response in terms of the statistics of
the uncertain parameters and of the random loade ®btained stochastic moments have
been contrasted with Monte-Carlo estimates usetieaechmark highlighting the effects of
parameter uncertainties and load fluctuations ire tetructural response. The use of the
proposed approach to deal with Gaussian randomtatxen have been also reported in
appendix.

Sommario. In questo lavoro € stata affrontata I'analisi dmica di strutture elastiche lineari
in presenza di incertezze nelle caratteristiche cariche e/o geometriche, mediante il
metodo delle distorsioni virtuali (VDM). La presandi fluttuazioni aleatorie nei parametri
strutturali &€ stata quindi rappresentata da un aree opportuno di distorsioni virtuali che
dipendono dai parametri fluttuanti e dallo stato sbllecitazione e sono applicate su una
struttura omogenea e deterministiddapplicazione del metodo in campo dinamico e stata
condotta mediante la trasformata di Laplace otteteerun’espressione asintotica della
risposta della struttura che contiene i parametieatori in forma esplicita. Di conseguenza
le statistiche della risposta strutturale sono stattenute in funzione esplicita dei momenti di
ogni ordine dei parametri incerti. Sono state ancipdrtate alcune applicazioni numeriche
relative ad applicazioni del metodo a sistemi stmali costituiti da travi reticolari.

1 INTRODUCTION

Random vibrations of engineering systems have beastigated since the middle of the last
century in aerospace, civil and mechanical appboat The analysis, initially confined to
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Gaussian random processes to model environmertiahaapplied on dynamical systems,
has been further extended to other kind of exomatithat are better modelled as Poissonian
random excitations or, more recently, @s sTable Levy flights. In such cases the external
excitations are the only source of randomness aachamnical and inertial characters of the
structures were assigned up to a certain degraeaniracy. On the other hand it is nowadays
widely accepted that uncertain sources in struttiyilaamics are related either to fluctuations
of external excitations as well as to the unpredid@ deviations of material properties from
their nominal values or to slightly different maadfuring procedures. Structural
uncertainties, often modelled as random deviationgy significantly affect the dynamic
response of the considered system leading to cemgdobabilistic studies of random
structures since the seventies.

Probabilistic structural analysis in presence oflian parameters is usually provided in terms
of first and second order statistics of the disptaent field of the structure once the
probabilistic structure of the random parametessiteen specified. In such a context several
contributions may be found in scientific literatsirenitially focusing on Monte-Carlo
simulation methods Such a rather general tool to handle random sysf@oved soon to be
unpractical for large engineering systems with na@gree of freedom since it requires
thousands of time consuming analysis to yield ateudescription of the statistics of the
structural response. Such a consideration suggésteshtroduction of other, more efficient
tools for the analysis of randomly fluctuating stures. Those approaches may be framed in
the context of the finite element method for statitastructure since they involve random
stiffness matrices of the structure that cannotifwerted in closed, explicit form of the
random parameters. This unavoidable aspect in tiadysis of random structures led to
introduce first and second order perturbation ma#ghadubbed respectively FORM and
SORM™ that involve a Taylor series expansion of théfretss matrix in terms of the
uncertain parameters truncated, respectively, tst fand second order terms. As an
alternative the inverse of the random stiffnessrixatf the structure has been expanded in
Neumann serié involving matrix powers of the random stiffnesstrixathat lead various
authors to use it in symbiosis with Monte-Carlo lgsis. Some attempts to introduce exact
expressions for the statistics of the displaceniietd of random structures has been also
furnished in the last decade in presence of sthtidaterminate structur&s®. More recently

a different method based on the eigenpropertighetrandom stiffness element matrices of
the structure has been introduced both in fatimd dynamic settifg™® . Random
uncertainties in structural parameters and randgnmamic external excitations have been
investigated in the context of improved perturbatioethods as well as in presence of random
damping characteristics. In more recent studiesethoad based on stochastic differential
calculus to handle random vibrations of uncert&incsures have been also propdéed

In recent years analysis of uncertain trusses leas lramed in the context of the virtual
distortion method (VDM) that is a method to stushynrhomogeneous solids, i.e. in presence
of inclusions, originally proposed in the contektsolid mechanicS.Such a method aims to
represent the effects of solid-body inclusions asrasenient set of superimposed strain field
depending of the strain field and of the inclusabraracteristics. The method, applied to truss
and frame-like structures is specialized considgtivat the elongation of a bar with uncertain
parameters may be evaluated considering the bdrowtitparameter variations with
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convenient superimposed virtual distortion. Suchtadtions, elongations for a truss-like
structure, are parameter and axial stress depeaddrsuch an analysis has been widely used
in the analysis of random structures in statidrsgtyielding exact closed-form expressions of
the statistics of the displacement field for stdtc determinate structures. Analysis of
statically indeterminate structures leads to anmgmgtic expansion of the statistics of the
response in terms of the known statistics of theettain parameteld The method has been
successfully applied to elastic uncertain trusbes) under deterministic and random static
loads’ and to the cases of dynamic stationary vibratiorger deterministic lodf*%

The aim of the paper is to extend the VDM to theaiyic analyses of randomly fluctuating
structures in presence of uncertain parametersiandtationary excitations. The analysis has
been carried out in Laplace domain taking full adages of convolution theorems and
evaluating the displacements of the structure bhya&rix power series. Every-order statistics
of the structural response may be obtained with gheposed approach by means of
Kronecker algebra and they involve, in explicitmrthe statistical moments of the random
structural parameters.

The paper reports the general preliminaries tob#1 in sec.2. Sec.3 has been devoted to
the analysis of a random structure providing theessary formulation in terms of statistical
moments. The influence of the randomness of theststral parameters on the quality of the
response has been also shown for a nine-degraeexfdm structure reporting the first and
second-order moments of the displacement vecta.régponse evaluated with the proposed
method in the present formulation have been cst@dawith the statistics obtained via
Monte-Carlo simulations used as benchmark solusome conclusions has been reported in
sec.5. In appendix Al some details about Kronecktgebra have been reported and a
possible extension of the proposed method in poeseh Gaussian random loads has been
reported in appendix A2.

2 THE VIRTUAL DISTORTION METHOD: THEORETICAL
BACKGROUND

In this section VDM is introduced to deal with ded vibration of structural systems
experiencing variation in characteristic parameliées elastic modulus and/or cross-sections
dimensions. Fundamentals of VDM may be expressgorting to a linear elastic system like
the schematic truss depicted in Fig.1. In partictiia truss is composed bynodes in which
the masses and the external loads are concentmatedonnected b massless bardN(= 13

in Fig.1)

The dynamic equilibrium of the structure is rulgdthe system of coupled differential
equations:

{MU(B,t)+Du(B,t)+K(B)U(Bt)=f(t) (1)

u(B,0)=u,;u(B,0)=u,
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where we denotch(B,t) the (N x 1) displacement vector depending on titnend

parameters variations indicated Byf(t) the (N x 1) vector gathering the external dynamic
loads,M, D , K are the mass, dissipation and stiffness matrixhefttuss, respectively. In

particular the latter one is defined K B) =C"E(B)C beingC" the (N x N) equilibrium

matrix of the truss andE(B) is the (N x N) diagonal constitutive matrix of the truss with

elementsg; = E KJ (1+ Bf)/lr with E;modulus of elasticity,A the cross-sectional area
-th . . . )

and L, the length of thg™ member of the truss, respectively. Of primary img@oce is the

role of B, representing the parameter variation, that magbeelled by a random variable

with prescribed probability density function (pdf).
The analysis of such a structure will be completece the response is evaluated in terms

of displacementsu(t,B), elongationse(t,B)and axial stresseq(t,B) that are of course
parameter dependent.

1)

.....

E £(8) (t) F

v £ (E) :t\ V
Meccanica dei Materiali e delle Strutture | 1(2009), 1, PP. 88-107 91




Meccanica dei Materiali e delle Strutture
Vol. 1 (2009), no.1, pp. 88-109
ISSN: 2035-679X

. . . Dipartimento di Ingegneria Strutturale Aerospazal@eotecnica - DISAG
Universita degli Studi part  Ingegner Ut paz !

di Palermo

Fig.1b: Principal Structure Fig.1c: Auxiliary Structure

Performing analysis in the context of VDM [1] , limear setting so that the superposition
principle holds, we can solve this problem by @valysis of the same structure, but without
parameters variation, under two different agenciBserefore we have to consider the
structure with no parameters variatiorreference structurehat differs from the original one

only for the stiffness matrixX =C"EC that doesn’t depend 0B, being E populated by

diagonal eIementEjj = E _AJ/I.r that is, all the parameter variations are setzgrgs.

Firstly we consider this reference structure loatdgdhe external agencies Fig.(1 b) of the
original system that will be referred psncipal structurewhose governing equation is in the
form:

{Mup(t)fDup(t)+Kup(t)=f(t) )

Secondly we study the same structure, labellealuagiary structureFig.(1 c) under a proper
load that takes into account parameters variation:

M, (t)+Du,(t) +Ku,(t)=p(t,B)
{Ua(0)=0:ua(0): 0 (3)

For the definition of vector p(t,B) it is worth stressing that in static setting treame
problem has been solved by VDM [16] applying sup@ased strains of the form:

9(B)=-E"L(B)a(t B) (4)

on thereference structure with the (N x N) parameter dependent diagonal mattiB)
listing elements of typd; =B, /(l+ B ) in correspondence of members affected by random
parameter variatiorB, . Close observation of eq.(4) shows that superiegpagrain vector
8(B) depends on still unknown real stres, B) of the original structure.

Extension to dynamic setting of the VDM leads tbthe load vectop(t,B) in eq (3) as:

p(t,B)=-C'L(B)q(t. B) (5)
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According to the superposition principle, interaalal stress vect0|q(t, B) the displacement

vector u(t,B) and the strainse(t,B) are evaluated adding the contributions of the [gsaic
and the auxiliary structure in the form as:

a(t.B) =, (1) +a.(t.B) (62)
u(t,B) =u, (t) +u.(t.B) (6b)
e(t,B)=e, (t) +e,(t,B) (6¢)

2.1 PRINCIPAL STRUCTURE RESPONSE

The evaluation of the principal structure respomesemely vectorsu,(t), q,(t) ande,(t)

requires solution of the coupled differential edquiad system in eq.(2). The problem may be
afforded by classical modal analysis using the dioate transformatioru (t) =® vy (t),
where matrix® is the deterministic modal matrix collecting thgemvectors of the matrix
K™M .

Therefore introducing the above transformation ietp(2) and multiplying both sides of
the resulting equation by matri®" yielding:

¥, (1) + Ay, (1) + Q% (1) = @™ (t) = (1)
iy _ ™
yp(O)—d)up(O)y (0)_CD p(o)
where A, Q*are diagonal matrices listing, respectively:
A=l 20w 200, ... ... 20wyl (8 a)
Q=lafd? .. .. | (8 b)

being ¢; thej-th dissipation coefficient andf thej-th eigenvalue of the matriX ‘M .

Moreover, assuming that the system is at rest i\ initial state, that is
u,(0)=uy,=0 ; u,(0=uy=0 then the displacement vector response of thecipeh
structure is obtained via Duhamel integral as:

t

up(t):d)yp(t):QIH(t—r)g(r)dr:QH(t)[g(t) 9)

0
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where []] is the faltung product and H(t) =l h,(t) h,(t) .. hy()_] is a

diagonal matrix gathering the impulse response tians h; (t) of the modal coordinates
ypj (t) :

h; (t) =exp(~¢ & t)——— (10)

being the damped natural frequengy= 1—Zj2 .

To avoid the convolution integral in eq.(9) Laplacansform is used in the well-known
direct and inverse form as:

w(9=] e w(} d=0] o )] (11 8)
w(t)= [ (3 ds0[ ¢ )] (11 b)

being s the complex Laplace parameter. Introducing Laplaansform to both sides of
ed.(9) and taking full advantage of convolutionatteen [1] , the nodal displacement vector
may be reported in the form:

0,(9) =Y ,(9 = ®H(95( 3 (12)

where matrix I:I(s)=D[H(t)] collects the Laplace transforms of the impulsepoese
function h; (t) expressed as:

ﬁﬂ(s):mm(v]:( 1

PEEEIOE

(13)

2.2 AUXILIARY STRUCTURE RESPONSE

The evaluation of the auxiliary structure  responsenamely  vectors
u, (t,B),q,(t,B) ande,(t B) is not trivial, since the elements of vecpft,B) depend on
the axial stressq(t,B) which is still unknown, similar to the analysis sfatically
indeterminate trusses (Di Paola, 2004). In thieéahg dynamic analysis vectcp(t,B) that

represents the inertial, time-dependent, virtustiadtions depends on the axial stress and may
be conveniently expressed in terms of nodal digprents as:
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p(t,B)=-C'BECu(t,B)=-C"BEC|u, (1) +u,(t,B) ] (14)

with the parameter-depende(m X N) diagonal matrixB :|_Bl B, .. B,_], collecting

random fluctuations of structural parameters, thxegning equation of the auxiliary structure
Is rewritten in the form:

{M[ja(t)+DUa(t)+KUa(t):_CTBEC[Up(t)+ua(t)] (15 a, b)
u,(0)=0u,(0=0 |

Dynamic analysis of the auxiliary structure will heerformed introducing the modal
transformation of the displacement vectm;(t,B)with the modal matrix of the reference

structure, namelyb as:
u,(t,B)=@y,(t,B) (16)

that substituted into eq.(15 a, b) yields, aftemsostraightforward algebra, the system of
differential equations in the modal space as:

5. (08) A3, (1B)+ @y, (18 =R(BY,()+v.(18)
¥.(0,B)=0:y,(0,B)=0

with the parameter-dependent matRX B) represented as:
R(B)=T'BEI' ; I'=C® (18 a, b)

Eq.(17) is a system of second-order coupled diftfeakequations since load vector at the
right-hand side involves modal coordinates in evaguation. Integral representation of the
solution of eq.(17) may be obtained via Duhamedgmal resulting into a Volterra integral
equations system of second kind:

Ya(t.B) = —JEH (t-7)R(B)y, (r)dr—j-H (t-7)R(B)y.(r)dr (19)

0 0

Laplace transform of both sides of eq.(19) yieldsng convolution theorem, to the system of
coupledN algebraic equations:

Va(s.B)=-H(IR(BY,($-H( IR( Ba( sk (20)
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that may be solved, by means of successive appatixins assuming initially that no the
structural response vect@xg(l) is provided only by the first term in eq.(20) theknown. As

we obtaineoila(l) we may evaluate a better approximation using & msown corrective term

provided by the second contribution in eq.(20) diiedy the following iteration scheme as
from Picard’ method:

I8 (s.8)=-H(IR( B, ($=-H( $R( BH( ( )s
y9 (s B)=-H(IR(BA(3o( 3-H( R( BY( sk
(21)

50 (s.B)=-H(IR(BH(38( p-H( R( BI( s)

that may be cast in compact, form as:

[oe]

Yo (sB) =X (-H(9R(B) A( 3a( } (22)

j=1

Once the dynamic modal displacement vector fomatheliary structure has been obtained by
eq.(22), then the nodal displacement vector ofatindliary structure, (s,B), is furnished
by eq.(16).

2.3 STRUCTURAL RESPONSE

The complete dynamic response of the structure apldce domain, is obtained via eq.(6 a)
substituting the expressions for the modal cootdmabtained in egs.(12 ,22) yielding:

0(s.B) =0, (3+0,(s.B=0 A 23 (-aT(JBA( WA( T () (3

j=0

where A(s):EJ/ZF(H(s))M. It is worth noticing that expansion in eq.(23) asvays

convergent provided that the maximum value of thet@iations of the structural parameters
satisfies the conditiorma>{ Ei‘sl; ]=1,2,...N, since the maximum value of the spectral
radius, represented y the maximum value of the musdaf the eigenvalues of the matrix

Meccanica dei Materiali e delle Strutture | 1 (2009), 1, PP. 88-107 96



Meccanica dei Materiali e delle Strutture
Vol. 1 (2009), no.1, pp. 88-109
ISSN: 2035-679X

. Ly, Dipartimento di Ingegneria Strutturale Aerospazal@eotecnica - DISAG
Universita degli Studi part  Ingegner Ut paz !

di Palermo

AT(s)BA(9 and dubbed(s,B) is obtained for s=0 and takes value
A(0,B) = max‘l%‘.

i=12...N
Under the latter conditions the expansion in eq.(@8ckly yields the state variable vector
G(S,B) and in applications an approximate form of eq.({@3)y be used considering,,,,as

the maximum number of iterations.

At this point some remarks shall be stressp@nalysis conducted with the aid of Laplace
transform is not affected by drawbacks existena ipreviously used Fourier transform (Di
Paolaet al, 2004) approach since the spectral radius ofjimeral term in series expansion in
eq.(23) does not depend on external agendieq.(23) is still useless for probabilistic
analysis since no explicit dependence on struchaemeters has been provided.

In the next sections this major drawback will beermome introducing some Kronecker
algebra to inflate structural parameter space ointgiexplicit expressions for the statistics of
the structural response.

3 PROBABILISTIC ANALISYS OF RANDOM TRUSSES

Let us assume that random parameﬁjrs( =1 2,...,N) belong to a symmetric, closed,
interval B, D[—Ej ﬁ] and they are collected in M-vector b' =[B, B, .. B with

prescribed joint probability density function (pdfienoted p, (b .5 ...,k ). Probabilistic

analysis of random structures may be conducted weacget rid of the matrix products and
powers involving random parameter matrix in eq.(&3)ch a consideration may be provided

observing that each term in the matiX (s)BA(s) is a linear combination of the uncertain
parameterss; so that the following equality holds true:

ZN:a(AT(S) BA(s))
k=1 aBk
where matrix A, (s) reads:

a(s)aa(9 a3 a(p .-
() au(9 a3 alp - al)al) (25)
%(p

(

and a,(s) (k,j=12,...N is the jk-element of the matriA(s). Introducing Kronecker

algebra eq.(24) may be used as parent expressiothdoj-th power in series expansion
reported in eq.(24) observing that:

Bk:ij:lAk(s)L%(:AT(QBA(g (24)

Ay (s)=

an(9ac(3 aul 3 a()s &)
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AT iAk (9B=A,($bOlI (26)

k=1

where matrix| is the(N x N) identity matrix and th(éN x N2) matrix A (s), is the block
matrix reading:

=[A(9 A(9 . Ay(3] (27)
and operatof(] O[[] is the Kronecker product. Some details about Krkeealgebra have

been reported in the appendix Al. Following expamsn eq.(26) the j-th power in eq.(23)
may be rewritten as:

(AT(s)BA(9) =AM (gblT O (28)

Where[D][j] denotes Kronecker power of ordeand matrier(j) (s) is obtained via iterative
formula as:

A=A (9(1oA ()

AL () =AL(9(1DAI2(3) (29)

Substitution of eq.(28) into eq.(23) yields the alodisplacement vector in the form:
(9=0(3( S (400 o(Fi(y o

where matrix ®(s) =®H ()"*. Eq.(30) is an explicit formula in terms of paraere

fluctuations and it may be used to evaluate thassts of the nodal displacement vector
u(t) . To this aim let us evaluate the inverse Laplaaestiorm to eq.(30) yielding:

u(t)=0"

o(9) S A (901 Jo( 3 ﬂ @

j=0

and performing mathematical expectation the mesplaltement vector reads:

Meccanica dei Materiali e delle Strutture | 1 (2009), 1, PP. 88-107 o8



Meccanica dei Materiali e delle Strutture
Vol. 1 (2009), no.1, pp. 88-109
ISSN: 2035-679X

. . . Dipartimento di Ingegneria Strutturale Aerospazal@eotecnica - DISAG
Universita degli Studi part  Ingegner Ut paz !

di Palermo

D—l

u, (1) =E[u(t)]=E

o3[ Sl a0 w0 o373 -
:D‘{&J(s)(i(—l)j Ae‘”(s)mj(b)m]@( 91(3

where mathematical expectatidﬁ[b[”]zmj (b) is the vector of stochastic moments of

order j of the random parameter vector that is known dheepdf p, (b .53 ,....R ) has been
prescribed.

Second-order moments of the displacement vedafined asE| u(t,) Ju(t,) | may be
provided by similar operations, yielding, for thement vector:

E[u(tl)Du(tZ)]:
=350 [(4)' B(s)Al (8)m S(s) T( 9]00 [ ()" &( A ( gmb( §T(
(33)

where we denoted than; andm, , respectively,(Nj X N) and( N* x N) matrices obtained
as matrix blocks:

M, (b) O :F’J} (34)

Multiple-time expectation may be provided with damiformulas and they have not been
reported for brevity.

The case of non-stationary random excitation undéerariate-Gaussian random load has
been reported in appendix B since it can be dersteslghtforwardly within the context of
proposed method.

4 NUMERICAL APPLICATIONS

In this section the proposed method to deal witldoan vibrations of random structures
will be used to represent the random response eftldegree of freedom uncertain truss
reported in Fig.(3).

Pl ::4-: L P2
O —
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- L __ 7 : gl
L2 X A -t
K P i iPi_f: (v
£ (1)
19 ()

Bar Label L, (cm) A (crP) E, (Kglen) a, (rad) b (%)
1 250 4 2.1x10 0 10%
2 250 4 2.1x10 72 20%
8 250 4 2.1x 16 72 30%
4 250 4 2.1x 10 u 10%
5 250 /2 8 2.1x 10 /4 20%
6 250 4 2.1x 16 0 30%
! 250+/2 8 2.1x 16 34 10%
8 250 4 2.1x 10 772 20%
o 250 4 2.1x10 T 30%

Tab.1: Bar properties of the nine degree of freedom truss
The geometric and elastic characteristics of thestmembers have been reported in Tab.1.

Each truss member is affected by a structural waicgy so that the axial stiffness of the bar

is modelled as EjA(H Iﬁ)/l_r with B, (j=12,..,9 mutually independent random
variablesE[Bj Bszjkaf (j.k=1,2,...,9 whereo; is the standard deviation of the thh
random variable andJ, is the well-known Kronecker delta. Random varigble

B; (j:1,2,...,9 are characterized by means of a prescribed, unjfprobability density

function as p, (b)=%2B HO[-B b].
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Node f(ka)  f,(ka) M (Kg,)
P 0 0 600
P, 0 1000 500
P, 0 0 600
P, 0 0 500
P 0 0 600

Tab.2: Nodal Loads and Nodal Masses

The values of maximum amplitude of parameter flatns as well as the values of the
coefficient of variations §ov, =, =b,/3) of the random fluctuations have been reported in

the last two columns of Tab.(1) as well.
The random load applied to the truss nodes is septed as an 1-variate random vector

process  as 1‘(t)T=f(t)[1‘1 f, f, f, f(ﬂT where the component vectors

X

y

have been specified in Tab.(2) that reports alemthdal masses used for dynamic analysis.
0.014
0.15 ) ) ) )

a1 0.012 O (b)
0.1

“n A nfn A
ool VYV YV AN

0. 002
-0.15
0 2 4 t 6 8 10 0 2 4 t 6 8 10

Figure 4 a,b: Mean and Second-Order moment ofoaértiiisplacemeruz(t); Continuous line proposed
method, Dots Monte-Carlo Simulation

f, :[fx(j) f(j)] (j =l...,4) represents the loads applied to the nodes ofrtiss &ind they

o
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Figure 5 a,b: Mean and Second-Order moment ofoaértﬂisplacemenus(t); Continuous line proposed
method, Dots Monte-Carlo Simulation

Two different kind of time-varying amplitude hasepereported:i) Harmonically time-
varying excitation with different frequenciefs(t) =sin(Q t) ; i) An impulsive loadd(t)

In fig.(4a, b) the meanE[Ul(t)] and the second-order momeE[Ul(t)z} of the

displacement functiorml(t) has been. The statistics obtained with the praposethod have

been contrasted with the corresponding estimates Monte-Carlo simulation. The
observation of fig.(4 a,b) shows that such a dywgahsystem is very sensitive to the presence
of initial condition since the maxima of the resperstatistics have been obtained in the range
0-5.0 seiand they are larger than stationary values.

Similar conclusions may be withdrawn from the olagon of figs.(5 a,b) reporting,

respectively, the meaE[Us(t)] and the second-order momelE{Us(t)z} of the vertical

displacement of nod®, .
The statistics of the response due to the impulsiad have been reported in fig.(6 a,b) in
which first-order statisticsE| U, (t) ]|, E[U,(t)] have been contrasted with Monte-Carlo

estimates (fig. 6 a, b). Second-order expectatiErﬁle(t)z},E[UL,(t)Z} have been also

reported in fig.(7 a, b) contrasting the Monte-Gas$timates used as benchmark.

0.1 0.15

(b)

: A /\vf\v/\vﬁv/\v/\v[\ :; /\vﬁvﬁvf\v/\v/\v

o

o

-0.15
0 0 2 4 ¢ 6 8 10
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Figure 6 a, b: Mean of horizontal displacemési(t) and vertical displacementsl,(t); Continuous line
proposed method, Dots Monte-Carlo Simulation

0. 0016 0.014
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0 2 4 t 6 8 10 0 2 4 t © 8 10

Figure 7 a, b: Second-Order moment of horizontapldicementU, (t) and vertical displacementsl, (t);
Continuous line proposed method, Dots Monte-Cailautation

5 CONCLUSIONS

In this paper the non-stationary analysis of randsractures, with random fluctuations of
mechanical and/or geometrical parameters with etsfee the nominal values, has been
framed in the context of the Virtual Distortion Med (VDM). Analysis has been focused on
random trusses to illustrate the capability of Wi#M. Such an approach yields the structural
displacement vector considering a deterministiacstires under the external, time-varying
load with a convenient set of superimposed virtdigtortions depending on the random
fluctuations as well as on the time varying axtaéss. In the context of linear elasticity the
structural response has been obtained resortingLaplace transform vyielding the
displacement vector in the form of an asymptotipassion that involves the random
structural parameters. A convenient manipulatiorthef expansion by means of Kronecker
algebra leads to an explicit expression of thecsiiral response in terms of random parameter
vector so that the statistics of the response nmagvaluated in closed-form. It has been
proved that every-order statistics of the randomam@ters are involved in the analysis of
random structures and the provided formulationvedito take into account any order moment
of random parameters that is important for theisdtas of the structural response. A
numerical study of an engineering-type truss hamnh@ovided to challenge the proposed
formulation with the Monte-Carlo estimates of tlesponse used as benchmark solutions for
different kind of external loads. It has been obedrthat retaining two terms of the proposed
expansion yields sufficiently accurate results wébpect to Monte-Carlo estimates.

The proposed approach to dynamic analysis of manttasses may be also applied for
random vibrations in presence of non-stationarydoam load and such an extension of the
proposed approach has been reported in appendix.
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APPENDIX A: FUNDAMENTALS OF KRONECKER ALGEBRA
The Kronecker product between two matrioksind B, respectively, of orde(mx n) and

(pxq) is a block matrixC of order (mCpx nClg where each block is obtained multiplying
each elemeng; of matrix A by the entire matrxB , which reads:

Meccanica dei Materiali e delle Strutture | 1 (2009), 1, PP. 88-107 106



Meccanica dei Materiali e delle Strutture
Vol. 1 (2009), no.1, pp. 88-109
ISSN: 2035-679X

. Ly, Dipartimento di Ingegneria Strutturale Aerospazal@eotecnica - DISAG
Universita degli Studi part  Ingegner Ut paz !

di Palermo

abB .. aB
C=AOB=| .. .. .. (B1)
a,B .. a,B
The Kronecker poweA is defined as:
A =ADADOmDA (B2)
Kronecker product has the follol(/vifsll; properties:
(AOB)(cOD)=(AC)O(BD) (B3)
(ADB) =AT OB’ (B4)
(ADB) ' =A"DB™ (B5)

provided that previous products exist.
The Kronecker sum of two matrice& and B, respectively of order(mx m) and

(px p) is defined as:

C=AUB=A0I,+I UB
(B6) wherel,, andl ,are, respectively, identity matrix of ordémx m) and (px p). More
details on Kronecker algebra may be found in [22].

APPENDIX B: RANDOM VIBRATIONS UNDER NON-STATIONARY GAUSSIAN
EXCITATION
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The proposed method to deal with random structomag be extented to the case of Gaussian
random excitation. To this aim let us assume tlé&real loads applied to the structure are
represented by a zero-mean, Gaussian univariat®manector, indicated in the following by

capital letter(f (t) - F(t)). Under this assumption vector of random proce$sd$ can be

represented ab (t) =FF (t) whereF is a (N x1) deterministic vector and (t) is a zero-

mean, non-stationary Gaussian process with prestriiatistics, namely the mean and
second-order correlation, respectively:

He () =E[F(1)]
Re (t.6) = B[ F(t) F(t)] -2 (1) & (1)
The analysis of the structural response in Lapkdomain involves the Laplace integral

transform of the random procest D[ ] which may be defined if the following
condition holds:

(B1 a, b)

00 00

[[R(t.t) e e** drdp<e (B2)

00
This latter requirement is fulfilled for the forgrrandom proces$ (t) assuming that the

autocorrelation functiorR. (t1 ,tz) vanishes asymptotically fdy,t, — *oo.

In the following we will assume that the uncertatnuctural parameters; (j:1,2,...,N)

belong to a symmetric and closed interval as in3sec
Similar arguments leading to the displacementordat Laplace domain in sec.3 yields to
express the displacement vector in Laplace space as

((s, B)=d( g(i(—l)" A (9plt DI]&J( SFH ¥ (B3)

j=0

yielding, after mathematical expectations, thetfasd second-order vector moments of the
displacement function in the form:

()= E[6(s 8]=8( 3 (/A (dm, ()01 Jo( FFa(} (@)

(B4 b)

@s(iivW” @§)M(mmﬂ (s 9 PR s}
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where we used the equivalenE{ F (S)J = - (9 and we introduced the expanded vectors:

IAL(s) o5

Time-domain evolution of the statistics of the nodisplacements may be achieved
performing inverse Laplace transform defined in.@&ya, b) as:

0

()20 8(3 S 0 (9m ()0 |85 F R (@oa

i=0

&M@@%iinM&wagmammﬂ“W§gamaﬁé}

(B6 b)

holding in presence of zero-mean random processe®ation of eq.(B6 b) shows that
second-order moments in time domain in presenceanflom loads is achieved by two-
dimensional inverse Laplace transform in eq.(B4sibce correlation function in the latter

factor couples Laplace parameteysands,.
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