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Abstract.  In this paper non-stationary dynamic analysis of linearly elastic structures 
involving uncertainties in material and/or in geometrical parameters has been reported in the 
framework of the virtual distortion method (VDM). By such a representation the statistics of 
the response may be obtained, explicitly, in terms of the statistics of the random parameters. 
The method have been extended also to the analysis of uncertain structures in presence of 
random external excitations providing the statistics of the response in terms of the statistics of 
the uncertain parameters and of the random load.  The obtained stochastic moments have 
been contrasted with Monte-Carlo estimates used as benchmark  highlighting the effects of 
parameter uncertainties and load fluctuations in the structural response. The use of the 
proposed approach  to deal with Gaussian random excitation have been also reported in 
appendix. 

Sommario. In questo lavoro è stata affrontata l’analisi dinamica di strutture elastiche lineari 
in presenza di incertezze nelle caratteristiche meccaniche e/o geometriche, mediante il 
metodo delle distorsioni virtuali (VDM). La presenza di fluttuazioni aleatorie nei parametri 
strutturali è stata quindi rappresentata da un insieme opportuno di distorsioni virtuali che 
dipendono dai parametri fluttuanti e dallo stato di sollecitazione e sono applicate su una 
struttura omogenea e deterministica. L’applicazione del metodo in campo dinamico è stata 
condotta mediante la trasformata di Laplace ottenendo un’espressione asintotica della 
risposta della struttura che contiene i parametri aleatori in forma esplicita. Di conseguenza 
le statistiche della risposta strutturale sono state ottenute in funzione esplicita dei momenti di 
ogni ordine dei parametri incerti. Sono state anche riportate alcune applicazioni numeriche 
relative ad applicazioni del metodo a sistemi strutturali costituiti da travi reticolari.  

1 INTRODUCTION 
Random vibrations of engineering systems have been investigated since the middle of the last 
century in aerospace, civil and mechanical applications. The analysis, initially confined to 
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Gaussian random processes to model environmental actions applied on dynamical systems, 
has been further extended to other kind of excitations that are better modelled as Poissonian 
random excitations or, more recently, as α− sTable Lèvy flights.  In such cases the external 
excitations are the only source of randomness and mechanical and inertial characters of the 
structures were assigned up to a certain degree of accuracy. On the other hand it is nowadays 
widely accepted that uncertain sources in structural dynamics are related either to fluctuations 
of external excitations as well as to the unpredicTable deviations of material properties from 
their nominal values or to slightly different manufacturing procedures. Structural 
uncertainties, often modelled as random deviations, may significantly affect the dynamic 
response of the considered system leading to consider probabilistic studies of random 
structures since the seventies.  
Probabilistic structural analysis in presence of random parameters is usually provided in terms 
of first and second order statistics of the displacement field of the structure once the 
probabilistic structure of the random parameters has been specified. In such a context several 
contributions may be found in scientific literatures initially focusing on Monte-Carlo 
simulation methods1. Such a rather general tool to handle random systems proved soon to be 
unpractical for large engineering systems with may degree of freedom since it requires 
thousands of time consuming analysis to yield accurate description of the statistics of the 
structural response. Such a consideration suggested the introduction of other, more efficient 
tools for the analysis of randomly fluctuating structures. Those approaches may be framed in 
the context of the finite element method for stochastic structure since they involve random 
stiffness matrices of the structure that cannot be inverted in closed, explicit form of the 
random parameters. This unavoidable aspect in the analysis of random structures led to 
introduce first and second order perturbation methods, dubbed respectively FORM and 
SORM2-5  that involve a Taylor series expansion of the stiffness matrix in terms of the 
uncertain parameters truncated, respectively, to first and second order  terms. As an 
alternative the inverse of the random stiffness matrix of the structure has been expanded in 
Neumann series6,7 involving matrix powers of the random stiffness matrix that lead various 
authors to use it in symbiosis with Monte-Carlo analysis. Some attempts to introduce exact 
expressions for the statistics of the displacement field of random structures has been also 
furnished in the last decade in presence of statically determinate structures8-10 .  More recently 
a different method based on the eigenproperties of the random stiffness element matrices of 
the structure has been introduced both in static11 and dynamic setting12,13 . Random 
uncertainties in structural parameters and random dynamic external excitations have been 
investigated in the context of improved perturbation methods as well as in presence of random 
damping characteristics. In more recent studies a method based on stochastic differential 
calculus to handle random vibrations of uncertain structures have been also proposed14. 
In recent years analysis of uncertain trusses has been framed in the context of the virtual 
distortion method (VDM) that is a method to study non-homogeneous solids, i.e. in presence 
of inclusions, originally proposed in the context of solid mechanics15.Such a method aims to 
represent the effects of solid-body inclusions as a convenient set of superimposed strain field 
depending of the strain field and of the inclusion characteristics. The method, applied to truss 
and frame-like structures is specialized considering that the elongation of a bar with uncertain 
parameters may be evaluated considering the bar without parameter variations with a 
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convenient superimposed virtual distortion. Such distortions, elongations for a truss-like 
structure,  are parameter and axial stress dependent and such an analysis has been widely used 
in the analysis of random structures in static setting yielding exact closed-form expressions of 
the statistics of the displacement field for statically determinate structures. Analysis of 
statically indeterminate structures leads to an asymptotic expansion of the statistics of the 
response in terms of the known statistics of the uncertain parameters16. The method has been 
successfully applied to elastic uncertain  trusses, both under deterministic and random static 
loads17 and to the cases of dynamic stationary vibrations under deterministic load18-21.  
The aim of the paper is to extend the VDM to the dynamic analyses of randomly fluctuating 
structures in presence of uncertain parameters and non-stationary excitations. The analysis has 
been carried out in Laplace domain taking full advantages of convolution theorems and 
evaluating the displacements of the structure by a matrix power series. Every-order statistics 
of the structural response may be obtained with the proposed approach by means of 
Kronecker algebra and they involve, in explicit form, the statistical moments of the random 
structural parameters. 
The paper reports the general preliminaries to the VDM in sec.2. Sec.3 has been devoted to 
the analysis of a random structure providing the necessary formulation in terms of statistical 
moments. The influence of the randomness of the structural parameters on the quality of the 
response has been also shown for a nine-degree of freedom structure reporting the first and 
second-order moments of the displacement vector. The response evaluated with the proposed 
method in the  present formulation have been contrasted with the statistics obtained via 
Monte-Carlo simulations used as benchmark solution; some conclusions has  been reported in 
sec.5. In appendix A1 some details about Kronecker algebra have been reported and a 
possible extension of the proposed method in presence of Gaussian random loads has been 
reported in appendix A2. 

2 THE VIRTUAL DISTORTION METHOD: THEORETICAL 
BACKGROUND 
In this section VDM  is introduced to deal with forced vibration of structural systems 
experiencing variation in characteristic parameters like elastic modulus and/or cross-sections 
dimensions.  Fundamentals of VDM may be expressed resorting to a linear elastic system like 
the schematic truss depicted in Fig.1. In particular this truss is composed by N nodes in which 
the masses and the external loads are concentrated and connected by N massless bars (N = 13 
in Fig.1) 
The dynamic equilibrium of the structure is ruled by the system of coupled differential 
equations:   

 

0 0

( , ) ( , ) ( ) ( , ) ( )

( ,0) ; ( ,0)

B t B t B B t t

B B
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where we denoted ( ),B tu  the (N × 1) displacement vector depending on time t and 

parameters variations indicated by B, f(t) the (N × 1) vector gathering the external dynamic 
loads, M, D , K are the mass, dissipation and stiffness matrix of the truss, respectively. In 
particular the latter one is defined as ( ) ( )TB B=K C E C  being CT the ( )N N×  equilibrium 

matrix of the truss and ( )BE  is the ( )N N×  diagonal constitutive matrix of the truss with 

elements ( )1jj j j j jE E A B L= +  with jE modulus of elasticity, jA  the cross-sectional area 

and jL  the length of the j th member of the truss, respectively. Of primary importance is the 

role of  jB  representing  the parameter variation, that may be modelled by a random variable 

with prescribed probability density function (pdf).  
The analysis of such a structure will be completed once the response is evaluated in terms 

of displacements ( )t ,Bu , elongations ( )t ,Be and axial stresses ( )t ,Bq
 
that are of course 

parameter dependent.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1a: Sample of multi-degree of freedom truss with randomly varying parameters 
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Performing analysis in the context of VDM [1] , in linear setting so that the superposition 
principle holds, we can solve this problem  by two analysis of the same structure, but  without 
parameters variation, under two different agencies. Therefore we have to consider the 
structure with no parameters variation as reference structure, that differs from the original one 
only for the stiffness matrix T=K C EC  that doesn’t depend on jB  being E  populated by 

diagonal elements jj j j jE E A L=  that is, all the parameter variations are setting zeros.  

Firstly we consider this reference structure loaded by the external agencies Fig.(1 b) of the 
original system that will be referred as principal structure whose governing equation is in the 
form: 
 

            
( ) ( ) ( ) ( )

( ) ( )
p p p

p p

t t t t

0 ; 0

 + + =


= =

&& &

&&

Mu Du Ku f

u u u u
         (2) 

 
Secondly we study the same structure, labelled as auxiliary structure Fig.(1 c) under a proper 
load that takes into account parameters variation: 

   
( ) ( ) ( ) ( )

( ) ( )
,

0 0; 0 0

a a a
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For the definition of vector  ( ),t Bp  it is worth stressing that in static setting the same 

problem has been solved by VDM [16] applying superimposed strains of the form:  
 

                       ( ) ( ) ( )1 ,B B t Bϑϑϑϑ −= −E L q                                           (4) 

 
on the reference structure,  with the ( )N N×  parameter dependent diagonal matrix ( )BL  

listing elements of type ( )1jj j jL B B= +  in correspondence of members affected by random 

parameter variation jB . Close observation of eq.(4) shows that superimposed strain vector 

( )Bϑϑϑϑ  depends on still unknown real stress ( ),t Bq of the original structure. 

Extension to dynamic setting of the VDM leads to set the load vector ( ),t Bp  in eq (3) as: 

 

( ) ( ) ( ), ,Tt B B t B= −p C L q            (5) 

 

Fig.1b: Principal Structure Fig.1c: Auxiliary Structure 
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According to the superposition principle, internal axial stress vector  ( ),t Bq  the displacement 

vector ( ),t Bu  and the strains  ( ),t Be  are evaluated adding the contributions of the principal 

and the auxiliary structure in the form as: 
 

( ) ( ) ( ), ,p at B t t B= +q q q       (6 a) 

( ) ( ) ( ), ,p at B t t B= +u u u       (6 b) 

( ) ( ) ( ), ,p at B t t B= +e e e       (6 c) 
 

2.1  PRINCIPAL STRUCTURE RESPONSE 

The evaluation of the principal structure response, namely vectors ( ) ( ) ( ),  and p p pt t tu q e  

requires solution of the coupled differential equations system in eq.(2). The problem may be 
afforded by classical modal analysis using the coordinate transformation ( )  ( )p pt t=u Φ y , 

where matrix Φ  is the deterministic modal matrix collecting the eigenvectors of the matrix 
1−K M . 
Therefore introducing the above transformation into eq.(2) and multiplying both sides of 

the resulting equation by matrix TΦ  yielding:  
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

0 0 ; 0 0

T
p p p

T T
p p p p

t t t t t + + = =


= =

y Λy y f g

y u y u

&& &

& &

Ω ΦΩ ΦΩ ΦΩ Φ

Φ ΦΦ ΦΦ ΦΦ Φ
       (7) 

                                           

where 2,  Λ Ω are diagonal matrices listing, respectively: 
 

   1 1 2 22 2 2 N Nζ ω ζ ω ζ ω=Λ K K         (8 a) 
2 2 2 2

1 2 Nω ω ω=Ω K K        (8 b) 

 
being jζ  the j-th dissipation coefficient and 2jω  the j-th   eigenvalue of the matrix 1−K M . 

Moreover, assuming that the system is at rest in its initial state, that is 

( ) ( )0 00   ;  0p p= = = =u u 0 u u 0& &  then  the displacement vector response of the principal 

structure is obtained via Duhamel integral as:  
 

( ) ( ) ( ) ( ) ( ) ( )
0

 d
t

p pt t t t tτ τ τ= = − = ∗∫u Φ y Φ H g ΦH g        (9) 
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where [ ] [ ]∗� �  is the faltung product and  ( ) ( ) ( ) ( )11 22 ... NNt h t h t h t=H
 

is a 

diagonal matrix gathering the impulse response functions ( )jjh t of the modal coordinates 

( )
jpy t : 

( ) ( ) ( )sin
exp j

jj j j
j

t
h t t

ω
ζ ω

ω
= −       (10) 

being the damped natural frequency 21j j jω ω ζ= − .  

To avoid the convolution integral in eq.(9) Laplace transform is used in the well-known 
direct and inverse form as: 

    ( ) ( ) ( )
0

 stŵ s e w t dt w t
∞

−= =℘  ∫     (11 a) 

( ) ( ) ( )1

0

 st ˆ ˆw t e w s ds w s
∞

−= =℘   ∫               (11 b)

      
being  s the complex Laplace parameter.  Introducing Laplace transform to both sides of 
eq.(9) and taking full advantage of convolution theorem  [1] , the nodal displacement vector 
may be reported in the form:  
 

ˆ ˆˆ ˆ( ) ( ) ( ) ( )p ps s s s= =u Φy ΦH g      (12) 

 

where matrix ˆ ( ) [ ( )]s t=℘H H  collects the Laplace transforms of the impulse response 

function ( )jjh t  expressed as:  

( )2 2

1ˆ ( ) [ ( )]
2

jj jj

j j j

h s h t
s sω ζ ω

=℘ =
+ +

     (13) 

 

2.2  AUXILIARY STRUCTURE RESPONSE 

The evaluation of the auxiliary structure response, namely vectors 

( ) ( ) ( ), , ,  and ,a a at B t B t Bu q e   is not trivial, since the elements of vector ( )t,Bp  depend on 

the axial stress ( )t,Bq  which is still unknown, similar to the analysis of statically 

indeterminate trusses (Di Paola,  2004). In the following dynamic analysis vector ( )t,Bp
 
that 

represents the inertial, time-dependent, virtual distortions depends on the axial stress  and may 
be conveniently expressed in terms of nodal displacements as: 
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( ) ( ) ( ) ( )T T
p at ,B t,B t t ,B = − = − + p C BECu C BEC u u     (14) 

 

with the parameter-dependent ( )N N×  diagonal matrix 1 2 NB B ... B=B , collecting 

random fluctuations of structural parameters, the governing equation of the auxiliary structure 
is rewritten in the form: 
 

   
( ) ( ) ( ) ( ) ( )

( ) ( )0 0; 0 0

T
a a a p a

a a

t t t t t  + + = − +  


= =

&& &

&

Mu Du Ku C BEC u u

u u
        (15 a, b)

   
Dynamic analysis of the auxiliary structure will be performed introducing the modal 
transformation of the displacement vector ( ),a t Bu with the modal matrix of the reference 

structure, namely Φas: 
 

( ) ( ) a at ,B t,B=u Φ y        (16) 

 
that substituted into eq.(15 a, b) yields, after some straightforward algebra, the system of 
differential equations in the modal space as: 
 

( ) ( ) ( ) ( ) ( ) ( )( )2, , , ,

(0, ) ; (0, )

a a a p a

a a

t B t B t B B t t B

B B

 + + = +


= =

y Λy y R y y

y 0 y 0

&& &

&

ΩΩΩΩ
    (17) 

 
with the parameter-dependent matrix ( )BR  represented as: 

 

( ) TB =R Γ BEΓ    ;    =Γ CΦ            (18 a, b) 

 
Eq.(17) is a system of second-order coupled differential equations since load vector at the 
right-hand side involves modal coordinates in every equation. Integral representation of the 
solution of eq.(17) may be obtained via Duhamel integral resulting into a Volterra integral 
equations system of second kind:  
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

d d
t t

a p at ,B t B t Bτ τ τ τ τ τ= − − − −∫ ∫y H R y H R y     (19) 

 
Laplace transform of both sides of eq.(19) yields, using convolution theorem, to the system of 
coupled N algebraic equations: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )a p a
ˆ ˆˆ ˆ ˆs,B s B s s B s,B= − −y H R y H R y     (20) 
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that may be solved, by means of successive approximations assuming initially that no the 

structural response vector ( )1
aŷ  is provided only by the first term in eq.(20) that is known. As 

we obtained ( )1
aŷ  we may evaluate a better approximation using it as a known corrective term 

provided by the second contribution in eq.(20) yielding the following iteration scheme as 
from Picard’ method: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

2 1

1

a p

a a

r r
a a

ˆ ˆ ˆ ˆˆ ˆs,B s B s s B s s

ˆ ˆ ˆˆˆ ˆs,B s B s s s B s,B

...

ˆ ˆ ˆˆˆ ˆs,B s B s s s B s,B

...

−

= − = −

= − −

= − −

y H R y H R H g

y H R H g H R y

y H R H g H R y

    (21) 

 
that may be cast in compact, form as: 
 

( ) ( ) ( )( ) ( ) ( )
1

j

a
j

ˆ ˆ ˆˆ s,B s B s s
∞

=
= −∑y H R H g      (22) 

 
Once  the dynamic modal displacement vector for the auxiliary structure has been obtained by 
eq.(22),  then the nodal displacement vector of the auxiliary structure, ( )aˆ s,Bu , is furnished 

by eq.(16).  
 

2.3 STRUCTURAL RESPONSE 

The complete dynamic response of the structure, in Laplace domain, is obtained via eq.(6 a) 
substituting the expressions for the modal coordinates obtained in eqs.(12 ,22) yielding:   
 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 2 1 2

0

 
jT T

p a
j

ˆˆ ˆˆ ˆ ˆs,B s s,B s s s s s
∞

=
= + = −∑u u u Φ H A BA H Φ f

    

(23) 

 

where ( ) ( )( )1 21 2 ˆs s=A E Γ H . It is worth noticing that expansion in eq.(23) is always 

convergent provided that the maximum value of the fluctuations of the structural parameters 

satisfies the condition 1jmax B ≤ ; j=1,2,…,N, since the maximum value of the spectral 

radius, represented y the maximum value of the modulus of the eigenvalues of the matrix 
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( ) ( )T s sA BA  and dubbed ( )s,Bλ  is obtained for 0s =  and takes value 

( )
1 2

0 j
j , ,...,N

,B max Bλ
=

= . 

Under the latter conditions the expansion in eq.(23) quickly yields the state variable vector 

( )ˆ s,Bu and in applications an approximate form of eq.(23) may be used considering maxN as 

the maximum number of iterations.  
At this point some remarks shall be stressed: i) Analysis conducted with the aid of Laplace 

transform is not affected by drawbacks existent in a previously used Fourier transform (Di 
Paola et al., 2004) approach since the spectral radius of the general term in series expansion in 
eq.(23) does not depend on external agencies; ii ) eq.(23) is still useless for probabilistic 
analysis since no explicit dependence on structural parameters has been provided.  

In the next sections this major drawback will be overcome introducing some Kronecker 
algebra to inflate structural parameter space obtaining explicit expressions for the statistics of 
the structural response. 

 

3 PROBABILISTIC ANALISYS OF RANDOM TRUSSES  

Let us assume that random parameters ( ) 1 2jB j , ,...,N=  belong to a symmetric, closed, 

interval j j jB b ,b ∈ −   and they are collected in a N-vector [ ]1 2
T

NB B ... B=b  with 

prescribed joint probability density function (pdf) denoted ( )1 2 Np b ,b ,...,bb . Probabilistic 

analysis of random structures may be conducted once we get rid of the matrix products and 
powers involving random parameter matrix in eq.(23). Such a consideration may be provided 
observing that each term in the matrix ( ) ( )T s sA BA  is a linear combination of the uncertain 

parameters jB  so that the following equality holds true: 

( ) ( )( ) ( ) ( ) ( )
1 1

TN N
T

k k k
k kk

s s
B s B s s

B= =

∂
= =

∂∑ ∑
A BA

A A BA     (24) 

where matrix  ( )k sA  reads: 

 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

k k k k k kN

k k k k k kN
k

Nk k Nk k Nk kN

a s a s a s a s ... a s a s

a s a s a s a s ... a s a s
s

... ... ... ...

a s a s a s a s ... a s a s

 
 
 =
 
 
 

A     (25) 

 
and ( ) ( ) 1 2kja s k, j , ,...,N=  is the jk-element of the matrix ( )sA . Introducing Kronecker 

algebra eq.(24) may be used as parent expression for the j-th power in series expansion 
reported in eq.(24) observing that: 
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( ) ( ) ( ) ( )
1

N
T

k k e
k

s s s B s
=

= = ⊗∑A BA A A b I      (26) 

 

where matrix I  is the ( )N N×   identity matrix and  the ( )2N N×  matrix ( )e sA , is the block 

matrix reading: 
 

( ) ( ) ( ) ( )1 2e Ns s s ... s=   A A A A      (27) 

 
and operator [ ] [ ]⊗� �  is the Kronecker product. Some details about Kronecker algebra have 

been reported in the appendix A1. Following expansion in eq.(26) the j-th power in eq.(23) 
may be rewritten as: 
            

     ( ) ( )( ) ( ) ( ) [ ]j j jT
es s s= ⊗A BA A b I      (28) 

 

where [ ][ ]j
�  denotes Kronecker power of order j and matrix ( ) ( )j

e sA  is obtained via iterative 

formula as: 
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

1 1

1 1 2

1

...

j j
e e e

j j
e e e

e e

s s s

s s s

s s

−

− −

= ⊗

= ⊗

=

A A I A

A A I A

A A

      (29) 

 
Substitution of eq.(28) into eq.(23) yields the nodal displacement vector in the form: 
 

( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )ˆˆ ˆˆ 1
j Tj j

e
j

s s s s s
∞ 

= − ⊗ 
 
∑u A b I f

=0=0=0=0

Φ ΦΦ ΦΦ ΦΦ Φ     (30) 

 

where matrix ( ) ( )1 2ˆ ˆs sHΦ = ΦΦ = ΦΦ = ΦΦ = Φ . Eq.(30) is an explicit formula  in terms of parameter 

fluctuations and it may be used to evaluate the statistics of the nodal displacement vector 

( )tu . To this aim let us evaluate the inverse Laplace transform to eq.(30) yielding: 

    

( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )1 ˆˆ ˆ1
j Tjj

e
j

t s s s s
=0=0=0=0

Φ ΦΦ ΦΦ ΦΦ Φ
∞

−   
=℘ − ⊗  

   
∑u A b I f     (31) 

 
and performing mathematical expectation the mean displacement vector reads: 
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( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆˆ ˆ1

ˆˆ ˆ1

j Tjj
e

j

j Tj
e j

j

t E t E s s s s

s s s s

−1−1−1−1

=0=0=0=0

−1−1−1−1

=0=0=0=0

µ = Φ Φµ = Φ Φµ = Φ Φµ = Φ Φ

Φ ΦΦ ΦΦ ΦΦ Φ

∞

∞

   
= ℘ − ⊗ =      

     

  
=℘ − ⊗  

   

∑

∑

u u A b I f

A m b I f

   (32) 

 

where mathematical expectation [ ] ( )j
jE   = b m b  is the vector of stochastic moments of 

order j  of the random parameter vector that is known once the pdf ( )1 2 Np b ,b ,...,bb  has been 

prescribed. 
Second-order moments  of  the displacement vector  defined as ( ) ( )1 2E t t⊗  u u  may be 

provided by similar operations, yielding, for the moment vector:     
 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1
1 1 1 1 2 2 2 2

0

ˆ ˆˆ ˆ ˆ ˆ1 1
j T k Tj k

e j e k
j k

E t t

s s s s s s s s
=0=0=0=0

Φ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ Φ
∞ ∞

− −

=

⊗ =  

   = ℘ − ⊗℘ −
   ∑∑

u u

A m f A m f

              (33) 

where we denoted the  and j km m , respectively, ( ) ( ) and j kN N N N× ×  matrices obtained 

as matrix blocks:  

( ) j
j k

k
+

 
⊗ =  

 

m
m b I

m
       (34) 

 
Multiple-time expectation may be provided with similar formulas and they have not been 
reported for brevity.  
 The case of non-stationary random excitation under univariate-Gaussian random load has 
been reported in appendix B since it can be derived straightforwardly within the context of 
proposed method.    

 

4 NUMERICAL APPLICATIONS 

In this section the proposed method to deal with random vibrations of random structures 
will be used to represent the random response of the 9-degree of freedom uncertain truss 
reported in Fig.(3).  

 
 
 
 L 1P 4 9 2P  3P  ( ) ( )3

xf t
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Bar Label 
iL  (cm) iA  (cm2) iE (Kg/cm2) iα  (rad) 

ib  (%) 

1 250  4 62.1 10×  0 10% 

2 250 4 62.1 10×  2π  20% 

3 250 4 62.1 10×  2π  30% 

4 250 4 62.1 10×  π  10% 

5 250 2  8 62.1 10×  4π  20% 

6 250 4 62.1 10×  0  30% 

7 250 2  8 62.1 10×  3 4π  10% 

8 250 4 62.1 10×  2π  20% 

9 250  4 62.1 10×  π  30% 

 

Tab.1: Bar properties of the nine degree of freedom truss 

The geometric and elastic characteristics of the truss members have been reported in Tab.1. 

Each truss member is affected by a structural uncertainty so that the axial stiffness of the bar 

is modelled as ( )1j j j jE A B L+  with ( ) 1,2,...,9jB j =  mutually independent random 

variables ( )2=  , 1,2,...,9j k jk jE B B j k  =  δ σ  where 2
kσ  is the standard deviation of the the k-th 

random variable and jkδ  is the well-known Kronecker delta. Random variables 

( ) 1,2,...,9jB j =  are characterized by means of a prescribed, uniform, probability density 

function as  ( ) 1 2     
jB j j j j jp b b b b ,b = ∈ −  . 

L 

1 

2 3 

5 

6 

7 8 

4P  5P  

( ) ( )1
xf t

( ) ( )1
yf t

( ) ( )2
xf t

( ) ( )2
yf t  

( ) ( )3
yf t

 

( ) ( )5
xf t

( ) ( )2
xf t

( ) ( )2
yf t  

( ) ( )4
xf t

( ) ( )4
yf t

 



    

Università degli Studi 
di Palermo 

Meccanica dei Materiali e delle Strutture 
Vol. 1 (2009), no.1, pp. 88-109 

ISSN: 2035-679X 
 

Dipartimento di Ingegneria Strutturale Aerospaziale e Geotecnica - DISAG 

 

Meccanica dei Materiali e delle Strutture |  1 (2009), 1, PP. 88-107   
 

101 

Node ( ) x ff Kg  ( ) y ff Kg  M ( )mKg  

1P  0 0 600 

2P  0 1000 500 

3P  0 0 600 

4P  0 0 500 

5P  0 0 600 

 

Tab.2: Nodal Loads and Nodal Masses 
 
The values of maximum amplitude of parameter fluctuations as well as the values of the 
coefficient of variations (cov 3k k kbσ= = )  of the random fluctuations have been reported in 

the last two columns of Tab.(1) as well.  
The random load applied to the truss nodes is represented as an 1-variate random vector 

process as ( ) ( ) ( )5
1 2 3 4

TT

xt f t f =  f f f f f  where the component vectors 

( ) ( ) ( )  1 4j j
j x yf f j ,..., = = f  represents the loads applied to the nodes of the truss and they 

have been specified in Tab.(2) that reports also the nodal masses used for dynamic analysis.  
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Figure 4 a,b: Mean and Second-Order moment of vertical displacement ( )2U t ; Continuous line proposed 

method, Dots Monte-Carlo Simulation 
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Figure 5 a,b: Mean and Second-Order moment of vertical displacement ( )5U t ; Continuous line proposed 

method, Dots Monte-Carlo Simulation 
 
Two different kind of time-varying amplitude has been reported: i) Harmonically time-
varying excitation with different frequencies ( ) ( )sin  f t t= Ω ; ii) An impulsive load ( )tδ   

In fig.(4a, b) the mean ( )1E U t    and the second-order moment ( )2

1E U t 
 

 of the 

displacement function ( )1u t  has been. The statistics obtained with the proposed method have 

been contrasted with the corresponding estimates via Monte-Carlo simulation. The 
observation of fig.(4 a,b) shows that such a dynamical system is very sensitive to the presence 
of initial condition since the maxima of the response statistics have been obtained in the range 
0 5.0 sec−  and they are larger than stationary values.  
Similar conclusions may be withdrawn from the observation of figs.(5 a,b)  reporting, 

respectively, the  mean ( )5E U t    and the second-order moment ( )2

5E U t 
 

 of the vertical 

displacement of node 2P  .  

The statistics of the response due to the impulsive load have been reported in fig.(6 a,b) in 

which first-order statistics ( ) ( )1 4,E U t E U t        have been contrasted with Monte-Carlo 

estimates (fig. 6 a, b). Second-order expectations ( ) ( )2 2

1 4,E U t E U t   
   

 have been also 

reported in fig.(7 a, b) contrasting the Monte-Carlo estimates used as benchmark.  
 

0 2 4 6 8 10
-0.1

-0.05

0

0.05

0.1

0 2 4 6 8 10
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

 t t

t t

(a) (b) 

(a) (b) 



    

Università degli Studi 
di Palermo 

Meccanica dei Materiali e delle Strutture 
Vol. 1 (2009), no.1, pp. 88-109 

ISSN: 2035-679X 
 

Dipartimento di Ingegneria Strutturale Aerospaziale e Geotecnica - DISAG 

 

Meccanica dei Materiali e delle Strutture |  1 (2009), 1, PP. 88-107   
 

103 

Figure 6 a, b: Mean of horizontal displacement ( )1U t and vertical displacements ( )4U t ; Continuous line 

proposed method, Dots Monte-Carlo Simulation 
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Figure 7 a, b: Second-Order moment of horizontal displacement ( )1U t and vertical displacements ( )4U t ; 

Continuous line proposed method, Dots Monte-Carlo Simulation 
 

5 CONCLUSIONS 
In this paper the non-stationary analysis of random structures, with random fluctuations of 
mechanical and/or geometrical parameters with respect to the nominal values, has been 
framed in the context  of the Virtual Distortion Method (VDM). Analysis has been focused on 
random trusses to illustrate the capability of the VDM. Such an approach yields the structural 
displacement vector considering a deterministic structures under the external, time-varying 
load with a convenient set of superimposed virtual distortions depending on the random 
fluctuations as well as on the time varying axial stress. In the context of linear elasticity the 
structural response has been obtained resorting to Laplace transform yielding the 
displacement vector in the form of an asymptotic expansion that involves the random 
structural parameters. A convenient manipulation of the expansion by means of  Kronecker 
algebra leads to an explicit expression of the structural response in terms of random parameter 
vector so that the statistics of the response may be evaluated in closed-form. It has been 
proved that every-order statistics of the random parameters are involved in the analysis of 
random structures and the provided formulation allows to take into account any order moment 
of random parameters that is important for the statistics of the structural response. A 
numerical study of an engineering-type truss has been provided to challenge the proposed 
formulation with the Monte-Carlo estimates of the response used as benchmark solutions for 
different kind of external loads. It has been observed that retaining two terms of the proposed 
expansion yields sufficiently accurate results with respect to Monte-Carlo estimates.  
 The proposed approach to dynamic analysis of random trusses may be also applied for 
random vibrations in presence of non-stationary random load and such an extension of the 
proposed approach has been reported in appendix.  
 

 

t t

(a) (b) 
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APPENDIX A: FUNDAMENTALS OF KRONECKER ALGEBRA 
The Kronecker product between two matrices A and B , respectively, of order ( )m n×  and 

( )p q×  is a block matrix C of order ( )m p n q⋅ × ⋅  where each block is obtained multiplying 

each element ija of matrix A  by the entire matrix B , which reads: 
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11 1

1

...

... ... ...

...

n

m mn

a a

a a

 
 = ⊗ =  
  

B B

C A B

B B

       (B1) 

The Kronecker power [ ]kA is defined as: 

   [ ]k

k fold−

= ⊗ ⊗⋅⋅⋅⊗A A A A1442443                   (B2) 

Kronecker product has the following properties: 
   ( )( ) ( ) ( )⊗ ⊗ = ⊗A B C D AC BD        (B3) 

   ( )T T T⊗ = ⊗A B A B          (B4) 

   ( ) 1 1 1− − −⊗ = ⊗A B A B         (B5)  

provided that previous products exist.  
 The Kronecker sum of two matrices A  and B , respectively of order ( )m m×  and 

( )p p×  is defined as: 

    m p= ⊕ = ⊗ + ⊗C A B A I I B                 

(B6) where  and m pI I are, respectively, identity matrix of order ( )m m×  and ( )p p× . More 

details on Kronecker algebra may be found in [22]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B:  RANDOM VIBRATIONS UNDER NON-STATIONARY GAUSSIAN   

EXCITATION 
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The proposed method to deal with random structures may be extented to the case of Gaussian 
random excitation. To this aim let us assume that external loads applied to the structure are 
represented by a zero-mean, Gaussian univariate random vector, indicated in the following by 

capital letter ( ) ( )( )t t→f F . Under this assumption vector of random processes ( )tF  can be 

represented as ( ) ( )t F t=F F  where F  is a ( )1N ×  deterministic vector and ( )F t  is a zero-

mean, non-stationary Gaussian process with prescribed statistics, namely the mean and 
second-order correlation, respectively: 
 

( ) ( )
( ) ( ) ( ) ( ) ( )1 2 1 2 1 2

F

F F F

t E F t

R t ,t E F t F t t t

µ

µ µ

=   

= −  
                    (B1 a, b) 

 
The analysis of the structural response in Laplace domain involves the Laplace integral 

transform of the random process ( ) ( )F̂ s F t=℘    which may be defined if  the following 

condition holds:   
            

     ( ) 1 1 2 2
1 2 1 2

0 0

s t s t
FR t ,t e e dt dt

∞ ∞
− − < ∞∫ ∫      (B2) 

 
This latter requirement is fulfilled for the forcing random process ( )F t  assuming that the 

autocorrelation function ( )1 2FR t ,t  vanishes asymptotically  for 1 2t ,t → ±∞ .  

In the following we will assume that the uncertain structural parameters ( ) 1 2jB j , ,...,N=  

belong to a symmetric and closed interval as in sec.3.  
Similar arguments  leading to the displacement vector in Laplace domain in sec.3 yields to 

express the displacement vector in Laplace space as:     
               

   ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )ˆˆ ˆˆ , 1
j Tjj

e
j

s B s s s F s
∞ 

= − ⊗ 
 
∑u A b I F

=0=0=0=0
Φ ΦΦ ΦΦ ΦΦ Φ     (B3) 

 
yielding, after mathematical expectations, the first and second-order vector moments of the 
displacement function in the form: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ, 1
j Tj

e j F
j

s E s B s s s sµ
∞ 

= = − ⊗    
 
∑u u A m b I F

=0=0=0=0
µ Φ Φµ Φ Φµ Φ Φµ Φ Φ       (B4 a) 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( )

1 2

2 2,
1 2 1 2 1 2 1 2

0

ˆ ˆ, ,

ˆˆ ˆ, 1 , , ,
j k Tj k

e j k F
j k

E s B s B

s s s s s s R s s
∞ ∞

+
+

=

⊗  

 
= − ⊗ 

 
∑∑

u u

A m b I F2 22 22 22 2

=0=0=0=0

Φ ΦΦ ΦΦ ΦΦ Φ
       (B4 b) 
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where we used the  equivalence ( ) ( )F
ˆ ˆE F s sµ  =   and we introduced  the expanded vectors: 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,
1 2 1 2

1 2 1 2

,     

ˆ ˆ ˆ,

j k j k
e e es s s s

s s s s

= ⊗

⊗

A A A
2222Φ = Φ ΦΦ = Φ ΦΦ = Φ ΦΦ = Φ Φ

    (B5)  

 
Time-domain evolution of the statistics of the nodal displacements may be achieved 
performing inverse Laplace transform defined in eqs.(B4 a,  b) as:  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆˆ ˆ1
j Tj

e j
j

t s s s F s
∞  

℘ − ⊗  
   

∑u A m b I F−1−1−1−1

=0=0=0=0

µ = Φ Φµ = Φ Φµ = Φ Φµ = Φ Φ          (B6 a) 

 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( )
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holding in presence of zero-mean random process. Observation of eq.(B6 b) shows that 
second-order moments in time domain in presence of random loads is achieved by two-
dimensional inverse Laplace transform in eq.(B4 b) since correlation function in the latter 
factor couples Laplace parameters 1 2 and s s .   

 

 
 
 


