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Abstract. It is widely known that fractional derivative isethbest mathematical tool to
describe visco-elastic constitutive law. In thigpeait is shown that as soon as we assume the
creep compliance function as power law type, ashm linearized version of the Nutting
equation, then the fractional constitutive law apggein a natural wayMoreover, using
Nutting equation for the creep function, the reksa modulus is also of power law type
whose coefficients (intensity and exponent) aréctbtr related to those of the creep
compliance. It follows that by a simple creep {estrelaxation test) by means of a best fitting
procedure we may easily evaluate the parameteMutting equation and then the fractional
differential equation.
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1 INTRODUCTION

The theory of derivatives of non-integer order gbask in 1695 when L’'Hospital asked
Leibniz the significance of (d“f(x)/dx”). After some attempts on properly defining

fractional derivative due to Lacroix (1819), Four{@822), Abel (1823), Liouville (1832) and
others, the most important step has been perfobhgeiemann (when he was a student) in
1847. It has to be stressed that fractional catcuis a misnomer since the order of the
derivatives and integrals is not fractional bubedongs to the wider class of real number (or
even complex ones), so that a more appropriataitdefi could be: generalized derivatives
and integrals. However for historical reasons prisferable not to change the nomenclature
since all people refer to generalized differentetulus as fractional one.

Fractional operators are simply convolution intégweith power law kernel. The beauty of
such operators is that they exactly behave as angliterivatives and integrals, that is all the
rules of classical operators with integer ordedhalie, including Leibniz rule and integration
by parts. Moreover also in Fourier and in Laplacendin the rules are quite similar and
simple like the case of the classical derivatived @tegrals of integer order. In the last
century many applications have been performed ysipb, chemistry, mechanics showing the
versatility of such a calculus and simplificatiotts describe real-world problems. Then a
question about so limited diffusion of such a pdwlertool in the engineering community
arises.

The answer to this question relies on many poigts:is universally known that integer
order derivatives have a clear geometrical andsiphl meaning. Fractional operators lack
geometrical and physical interpretation. The queshas been posed in many international
conferences and round tables in which comes otitstizh a point is still an open problem.
Even though attempts on this direction have beeriopeed (see e.g. Podlubnyand
references cited herein); ii)there are so manytitvaal operators like Marchaud, Riesz,
Caputo, Grunewald, Letnikov, etc.. It follows thegople may be disconcerted and it may be,
to fell fear since the books on fractional calcudme voluminous and at first glance one may
ask the motivation of so many different definitioifie reason of this relies on the fact that
real problems require different operators. As aangxe in unbounded domain working in
dynamics at steady state since the causality donds irrelevant the Riesz operator is more
amenable to get simpler solutions. The common ptnall the definitions of fractional
operators is the power law type of the kernel drat for every functional operator all the
rules of classical calculus still hold for everndiof definitions. Our suggestion is let start
only with Riemann-Liouville (RL) fractional operagand when a physical problem does not
exactly overlap the RL definition give a look irttee classical books and use the appropriate
operator; iii) fractional derivatives and integraisay not be tackled by hands, avoid to
conjecture fractional derivative. Such an exampéeftactional derivative of a constant is not
zero. Our suggestion is first declare what a kihftactional operator you use, second search
in the books or simply use MATHEMATICA environmeand you get the correct answer; iv)
there are different symbologies to define the saperator, it follows that reading different
paper often immediately you may not recognize therator at hand.

Aim of this paper is to introduce the main defimitiof fractional calculus and the related
properties. Our choice is to introduce only RL fragal operators in order to get a clue on
this subject. In order to show the capabilities #r@luse of fractional calculus a very simple
application on visco-elastic materials is presesiaede on this topic starting from the second
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part of the last century a lot of research effas been addressed to asses the capability of the
fractional calculus on this matter. It is widelydumn that the various single model of springs
and dashpots to describe the visco-elastic moklelMaxwell, Kelvin Voigt, Burger model
involving first order derivatives do not fit experental data. Then various attempts to use
fractional derivatives has been made in the pastmRhe beginning of the last century it was
shown that if the creep compliance, or relaxatiom assumed to be a power law then with
very few parameters an impressive coincidence aifferimental data is reached.

Based on this observation in this paper it is shthwat as soon as the creep compliance
exhibits a power law decay, then the fractionaivd¢ive appears in a natural way and the
various parameters (intensity and order of fra@iaperator) can be directly evaluated by a
best fitting procedure on creep test.

2 FRACTIONAL CALCULUS

The simplest way to define fractional calculusnisonsidering this primitive of a function
f (x) , we define such a primitive eést;f )(x) , that is

(15:7)(x) =

Generalization of eq.(1) leads to define the( ldsf )(x)

f(&)dé ;. x>a @)

[ T

('Qf)(x):z'if(f)dfmdt 2)

That is the R primitive of a function is simply a*hintegral. On the other hand in virtue of
the Cauchy formula thé'vprimitive of f (x) may be evaluated in the form

L T » Ji(;) d  neN ©

Eq.(3) shows that the multiple integral may be gasitaluated by a simple convolution
integral, whose kernel is of power law type. Theauratextension to a fractional integral is by
considering an exponent € R*. Sincel (a) interpolate the factoriall{(n) = (n-1)!) then
the proper extension of the Cauchy formula simphds

(]a+f)($> B r(la) faT( A d< ¢ >0 a € R (4)

v 5)17(\

That is known as Left Riemann-Liouville (RL) fraat@ integral. The right Riemann-
Liouville (RL) fractional integral is then defines

(];f)($> = an) f: <€ i(j))lu d¢ iz <b; a€R" (5)

Once RL fractional integrals have been defined, dbecept of RL fractional derivatives
comes out in a natural way. In order to show this define the derivative of order m, denoted
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as (D"f)(x)=d™f(X)/ dx"in the form(D"‘*”[(l f )(x)}) =(D™)(x). It follows that the

Riemann-Liouville fractional derivative may be defd as

a _1 d™x f(6)
(Da*f)(X)_r(a) dxmja(x— ) % (62)
m:[a]+1
. 1 d" o f(e)
(20 = siga L (6b)

In eq.(6) the symboH means integer part of the coefficient in the squarackets. RL
fractional integrals and derivatives remain meafuihgn unbounded domain putting

a — —00,b — co. In the latter case we simply dendte f )(x), (D7 f)(x) for the left RL

fractional integral and derivative respectively @Hef )(x),(D7f)(x) for the right RL

fractional integral and derivative respectively. literature the RL operators in unbounded
domain are termed as Weyl operators. From the atbefieitions it follows that RL fractional
integrals and derivatives are neither else thawvaation integrals whose kernel is of power

law type(:n — S)H interpolating derivatives and integral of integeder. At this point we may

wonder the reason for calling such convolution afms fractional integrals and derivatives
instead of convolutions with power law kernel. TThason is that it may be demonstrated that
all the rules of classical differential calculugdl stold for RL and Weyl fractional operators
including Leibniz rule and integration by paftsthis statement is of fundamental importance
to operate with fractional calculus.

Such an example

D (D f) (@) = (D7) (@) 5 1o (17f)(a) = (1977 F) ()
DL (L)) =(100)la) i e Y

Another fundamental remark that open the way to/ veteresting results is the fact that
eqs.4-7 remain meaningful for complex order=p +in (y=p e R*',n e R,i =+-1).

In this case the integer value of the derivativeds.(6) has to be rewritten as= [p] +1.

3 FOURIER TRANSFORM OF RL FRACTIONAL INTEGRALSAND
DERIVATIVES

Let us define the Fourier transform of a functif)('w) as

o f (x);a]=];exp[ 9 (%) dx () (8)
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wheref () is the Fourier transform of(x). Integration by parts lead to affirm that for
Fourier transformable functions the following redaships

O[(D)(x):0]= (=) F (9); O (1 7 ) (x): 9] = (9)"F (9) (9)

hold true. Moreover it may be easily demonstraked tor Fourier transformable functions we
have

O[(D2f)(x):8]=(7i9) £ (9) 5 O[(12F)(x);8]=(28) T (9); v=p+in; p>0 (10)

This very interesting result shows that RL fractioogerators behave like the Fourier
transform of classical derivatives and integralsaldgous results are obtained for Laplace

transform§, that is, consideringr (s) the Laplace transform of (t) as

F(s)=L(f(1)=[e*f(Ydt ; seC (11)
Laplace transform:k([)]of fractional integrals and derivative are giverihe form

L(1aE)(t)=s"F(s) ; LD f)()=s"F3 (12)

4 PITFALLSINTHE CLASSICAL THEORY OF VISCO-ELASTICITY

Let us start with the derivation of the Duhametkgral of the simplest linear system that is
the Kelvin visco-elastic model shown in Fig.(1)

20—

K u(t)
A B
g c —
| u(t)

Figure 1. Kelvin model of visco-elastic ®m
Such a model is constituted by a spring with carista and a dashpot characterized by a
damping coefficientC' and then the force exerted by the springlds(t)and the force

exerted by the dashpot (§u<t> beingu(t)and u(t) the relative displacement and velocity
between A and B, respectively. Now let us consalée Saint Venant visco-elastic bar of
cross A in traction with quasi-static Ioﬂ({t), each elementary volume is loaded
bya(t)dx dy (Fig.(2)). By denoting a& the elastic modulus andthe viscosity coefficient we
get for each elementary volume
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CRaate -

(13)

Then by denoting withdu(t)/dz, the strains(t), the constitutive law, for the visco-elastic
Kelvin model reported in Fig.1,is simply rewrittan

o(t)= Be(t)+ce(t) (14)

dy N(t)
A

o(t)=—+
< dx

Figure 2.De Saint Venant visco-elastic bar in traction ancelementary volume

Inspection of eq.(14) reveals that constitutive lawuled by ordinary differential equation in
the unknowna(t). On the other hand the response to an unitaryrmdtﬁ)adN(t) = U(t),

(U(t) =1,Vt > O;U(t) =0,Vt <0), denoted asf(t) is given as

J(t):

Being 3 = E/c and J(O) the value int = Ofor an unitary stress Ioadl(t) is termed in

3ol s+ 200

literature as creep compliance function. It is olog that the impulse response function is the
derivative of eq.(15), that is

h(t)=J(t) = %exp[—ﬁt] (1 —EJ (0)) (16)

It follows that the response to an arbitrary loatdry a(t) is given in the Duhamell form

t

g(t):%jo‘j(t_T)a(T)dT (17)

Analogous result may be found using Boltzmann’sespgsition principl& The convolution
integral in eqg.(17) is a hereditary one in the setgt the actual displacement (due to the

external load) depends on the entire past Ioadﬂyi&t(t) :
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At this stage it is necessary to make some commertke creep compliance function does
not come in a natural way because of the presefnde(@j that affects the result as shown in

eq.(17). Following the physics of the problekfn()) is assumed to be the instantaneous elastic
response and theﬂi(o) = U(t)/E; i) the solution of eq.(15) performed step-bypstenly

requires the actual value of the load t;rand the knowledge of the state varialal@j) in

order to predict the state variableti7n+ At iii) the kernel in the Duhamell integral, coming

from a linear differential equation is of exponahtiype. The latter behaviour happens for
more refined models like Burgers matler any other various combinations of spring and
dashpot like generalized Maxwell or Kelvin modédtlss is due to the fact that such refined
models are governed by linear differential equatjaand the homogeneous solution of such

equations remains of the typgak exp()\kt> being A the eigenvalues of such ordinary
k=1

differential equations aneh the number of dashpots present in the model gbgervation of
Fig.(3) in which the creep compliance of the Kelwodel reveals that ii=0 there is a
slope discontinuity i = 0 and for time ¢ — oo there is an asymptotic value. More refined
models based on various combinations of springs dashpots always show similar
behaviour that do not follow experimental evidence.

None of these conclusions in using linear diffeirequations strictly follow experimental

tests.
I (t)

S

1/c

v

Figure 3.Creep compliance of the Kelvin model

On the other harffdNutting (1921) from experimental data observedt tfa assigned
o = const, (Vt >0)

J(t) =bo't" (18)

that is known as Nutting equation for nonlinearcei®lasticity. In eq.(18) the parametebs,
r,a are determined from experimental tests. For=1 we have the linear visco-elastic
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material. Scott-Blal, used eq.(18) for various soft materials (suchrudzber) yielding a
satisfactory description of the short-time creefadd these materials.

5 FRACTIONAL MODEL OF LINEAR VISCO-ELASTIC MATERIAL

In this section it will be shown that, by using tNatting law to describe the stress-strain
relation, the fractional model of linear visco-¢ieisy comes out in a natural way. It has to be
stressed that such a model has been proposed bsakauthors. Scott Bldiwas the first
author that used fractional derivative in the cbasve law. The common motivation for
describing the constitutive law using fractionalidatives is that, visco-elastic materials

exhibit an intermediate behaviour between puralgsliress is proportional to the strai(t))

and pure fluids (stress is proportionalét@:)) then such intermediate behaviour between pure

solids and pure fluids may be described by an finesgliate” operator that is the fractional
derivative as

o(t)=E, (Dre)(t) (19)

where E_is an anomalous Young modult{E{(] = [Ftl’“ LZ}).

This equation is known as Scott-Blair formula. Gateation of this formula to many
parameters may be found in literaftité®**2 just to cite few. A pertinent bibliography on
this topic may be found in the book of Podlubif¥998). Once eq.(19) or a more refined
models involving a summation of fractional derivas at the right hand side of eq.(19) the
problem relies on determining the parameters in tfaetional differential equation.
Hereinafter it will be shown that both from creeprelaxation tests the parameters may be
found in a very simple way.
Let us start with the Nutting formula with =1 (linear visco-elastic model). The creep
compliance function is neither else that the respasf the system to a unit step function, then
its derivative is the impulse response functiow@fleto =1, V¢ > 0), that is

&(t) = bat*! (20)

then the Duhamell integral is written in the form

g

£(t) = ba;[(t—r)“a(r) dr = bcl_r(r;;) ':[ T (Tgl)a dr (21)

setting(c,)” = a bl (a)eq.(21) may be rewritten in the form

£(t) =Ci(lc‘){a)(t) (22)

a

the latter, using eq.(7) may be recast in the form
o(t)=c,(De)(t) = E, (Dse)(1) (23)

that coalesces with the Scott-Blair equation belag=c,. Eq.(23) remains valid for a
guiescent system at= 0. In simple words, as soon as we assume the Nuttingula
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specialized for the linear case (eq.18), then byguthe classical definition of dynamics of
Duhamell integral, the fractional derivative in th@nstitutive law comes out in a natural way.
Now we are able to predict the parametBrs « from the test giving the creep compliance.

That is from experimental test, by using a clagsiest fitting procedureb and « of the

Nutting equation may be determined, in tup = (a bl'(a'))_1 may be determined as well. It

is worth stressing that remains the order of the fractional derivative.
On the other hand, often tests are performed githegelaxation modquSP(t), that is the

stress history due to an assigned (constant) sthaithis case the relaxation modulus for
visco-elastic material is found to be well fitteg the power law equation

N &

Yt)=w,t7? ;0<p<1 ; [¥]= B

(24)

Denoting with J(s)and W(s)the Laplace transform of the creep compliance atakation
modulus, respectively, it follows that the Laplaansform of eq.(24) is simply written as

1)
Y(s)=—2
(=535 (25)
Since J(s)and W(s) are related each another by the relatioriShip
1
w(s)I9=2 (26)
then
s+[
J(s)=
(9= 2y, (27)
whose Laplace transform gives
tﬁ
= bt” (28)

(V)= Y (1-a)r(3-a)

1
WY (1-a)r(3-a)
of a best fitting procedure¥,and S are readily found and with the aid of the latter
expression botlo and a . For defining the creep compliance, remain deteeahi Notice that.
for @ =0eq.(23) is written a®r(t) = c,(t) that is the constitutive law of a spring (solid) i

being b= and a = S. It follows that from the relaxation test, by mean

restored, while fora =1eq.(23) is written asr(t) =c&(t) that is the constitutive law of a

dashpot (fluid) is restored. Eq.(23) obtained frerperimental test with € Ris then an
intermediate model between pure solid and puré flui

From results in this section we may state thatam sas from experimental test on the
visco-elastic material in terms of creep or rela@function is well fitted with a power law,
then the hereditary integral for the representatibthe response both in terms of stress or
strains is a fractional operator.
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6. CONCLUSIONS

It is widely understood that the constitutive lawr Wisco-elastic solids involves fractional
operators. The common motivation for introducingctsuwoperator is that visco-elastic
materials exhibit an intermediate behavior betwaeare solid and pure fluid and then such an
intermediate behavior is well fitted by using amemmediate operator that is the fractional
operator. In this paper it is shown that by assgntime Nutting equation for the creep

compliance functionJ(t) (J(t):bart“) then the constitutive law of the visco-elastic

system is governed by a Riemann Liouville fractlan@erator, whose order coalesces with
the real exponent of the Nutting equation .

It is also shown that by using Nutting equationtfug creep function, the relaxation modulus
is also of power law type whose coefficients (isighand exponent) are strictly related to
those of the creep compliance. It follows that bgimple creep test (or relaxation test) by
means of a best fitting procedure we may easilyuat@ the parameters of Nutting equation
and then the fractional differential equation.
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