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Abstract. It is widely known that fractional derivative is the best mathematical tool to 
describe visco-elastic constitutive law. In this paper it is shown that as soon as we assume the 
creep compliance function as power law type, as in the linearized version of the Nutting 
equation, then the fractional constitutive law appears in a natural way. Moreover, using 
Nutting equation for the creep function, the relaxation modulus is also of power law type 
whose coefficients (intensity and exponent) are strictly related to those of the creep 
compliance. It follows that by a simple creep test (or relaxation test) by means of a best fitting 
procedure we may easily evaluate the parameters of Nutting equation and then the fractional 
differential equation. 
 



Di Paola M. , Pirrotta A.  

Meccanica dei Materiali e delle Strutture |  1 (2009), 2, PP. 52-62    
 

53 

1 INTRODUCTION 

The theory of derivatives of non-integer order goes back in 1695 when L’Hospital asked 

Leibniz the significance of  ( )( )1 2 1 2d f x dx . After some attempts on properly defining 

fractional derivative due to Lacroix (1819), Fourier (1822), Abel (1823), Liouville (1832) and 
others, the most important step has been performed by Riemann (when he was a student) in 
1847. It has to be stressed that fractional calculus  is a misnomer since the order of the 
derivatives and integrals is not fractional but it belongs to the wider class of real number (or 
even complex ones), so that a more appropriate definition could be: generalized derivatives 
and integrals. However for historical reasons it is preferable not to change the nomenclature 
since all people refer to generalized differential calculus as fractional one. 

Fractional operators are simply convolution integrals with power law kernel. The beauty of 
such operators is that they exactly behave as ordinary derivatives and integrals, that is all the 
rules of classical operators with integer order hold true, including Leibniz rule and integration 
by parts. Moreover also in Fourier and in Laplace domain the rules are quite similar and 
simple like the case of the classical derivatives and integrals of integer order. In the last 
century many applications have been performed to physics, chemistry, mechanics showing the 
versatility of such a calculus and simplifications to describe real-world problems. Then a 
question about so limited diffusion of such a powerful  tool in the engineering community 
arises. 

The answer to this question relies on many points: i) it is universally known that integer 
order  derivatives have a clear geometrical and physical meaning. Fractional operators lack 
geometrical and physical interpretation. The question has been posed in many international 
conferences and round tables in which comes out that such a point is still an open problem. 
Even though attempts on this direction have been performed (see e.g. Podlubny1 and 
references cited herein); ii)there are so many fractional operators like Marchaud, Riesz, 
Caputo, Grunewald, Letnikov, etc.. It follows that people may be disconcerted and it may be, 
to fell fear since the books on fractional calculus are voluminous and at first glance one may 
ask the motivation of so many different definitions. The reason of this relies on the fact that 
real problems require different operators. As an example in unbounded domain working in 
dynamics at steady state since the causality condition is irrelevant the Riesz operator is more 
amenable to get simpler solutions. The common point to all the definitions of fractional 
operators is the power law type of the kernel and that for every functional operator all the 
rules of classical calculus still hold for every kind of definitions. Our suggestion is let start 
only with Riemann-Liouville (RL) fractional operators and when a physical problem does not 
exactly overlap the RL definition give a look into the classical books and use the appropriate 
operator; iii) fractional derivatives and integrals may not be tackled by hands, avoid to 
conjecture fractional derivative. Such an example the fractional derivative of a constant is not 
zero. Our suggestion is first declare what a kind of fractional operator you use, second search 
in the books or simply use MATHEMATICA environment and you get the correct answer; iv) 
there are different symbologies to define the same operator, it follows that reading different 
paper often immediately you may not recognize the operator at hand. 

Aim of this paper is to introduce the main definition of fractional calculus and the related 
properties. Our choice is to introduce only RL fractional operators in order to get a clue on 
this subject. In order to show the capabilities and the use of fractional calculus a very simple 
application on visco-elastic materials is presented since on this topic starting from the second 



Di Paola M. , Pirrotta A.  

Meccanica dei Materiali e delle Strutture |  1 (2009), 2, PP. 52-62    
 

54 

part of the last century a lot of research effort has been addressed to asses the capability of the 
fractional calculus on this matter. It is widely known that the various single model of springs 
and dashpots to describe the visco-elastic model like Maxwell, Kelvin Voigt, Burger model 
involving first order derivatives do not fit experimental data. Then various attempts to use 
fractional derivatives has been made in the past. From the beginning of the last century it was 
shown that if the creep compliance, or relaxation are assumed to be a power law then with 
very few parameters an impressive coincidence with experimental data is reached.  

Based on this observation in this paper it is shown that as soon as the creep compliance 
exhibits a power law decay, then the fractional derivative appears in a natural way and the 
various parameters (intensity and order of fractional operator) can be directly evaluated by a 
best fitting procedure on creep test. 

2 FRACTIONAL CALCULUS 

The simplest way to define fractional calculus is in considering this primitive of a function 

( )f x  , we define such a primitive as ( )( )1
+a

I f x  , that is  

( )( ) ( )1 ;ξ ξ+ = >∫
x

a
a

I f x f d x a (1) 

Generalization of eq.(1) leads to define the  as ( )( )+
n

a
I f x  

( )( ) ( )ξ ξ+ = ∫ ∫⋯ ⋯

x t
n

a
a a

I f x f d dt (2) 

That is the nth primitive of a function is simply a nth integral. On the other hand in virtue of 
the Cauchy formula the nth primitive of ( )f x  may be evaluated in the form 

( )( ) ( )
( )

( )1
1

1 !

x
n

na a

f
I f x d n

n x

ξ
ξ

ξ
+ −

= ∈
− −
∫ ℕ  (3) 

Eq.(3) shows that the multiple integral may be easily evaluated by a simple convolution 
integral, whose kernel is of power law type. The natural extension to a fractional integral is by 

considering an exponent α +∈ ℝ . Since ( )αΓ  interpolate the factorial (( ) ( )1 !Γ = −n n ) then 

the proper extension of the Cauchy formula simply reads 

( )( ) ( )
( )

( )1
1

; ;
x

a a

f
I f x d x a

x

α

α

ξ
ξ α

α ξ
+

+
−

= > ∈
Γ −
∫ ℝ  (4) 

That is known as Left Riemann-Liouville (RL) fractional integral. The right Riemann-
Liouville (RL) fractional integral is then defined as 

( )( ) ( )
( )

( )1
1

; ;
b

b x

f
I f x d x b

x

α

α

ξ
ξ α

α ξ
−

+
−

= < ∈
Γ −
∫ ℝ  (5) 

Once RL fractional integrals have been defined, the concept of RL fractional derivatives 
comes out in a natural way. In order to show this, we define the derivative of order m, denoted 
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as ( )( ) ( )=m m mf x d f x dxD in the form ( )( )( ) ( )( )+   = 
m n n mI f x f xD D . It follows that the 

Riemann-Liouville fractional derivative may be defined as 

( )( )
( )

( )
( )1

1α
α

ξ ξ
α ξ

+ −=
Γ −∫

m
x

ma a

fd
f x d

dx x
D  (6a) 

                                                                                                                             [ ] 1m α= +   

( )( ) ( )
( )

( )1
1 m b

mb x

fd
f x d

dx x

α

α

ξ
ξ

α ξ
− −

=
Γ −

∫D  (6b) 

In eq.(6) the symbol [ ]⋅  means integer part of  the coefficient in the square brackets. RL 
fractional integrals and derivatives remain meaningful in unbounded domain putting 

a →−∞ ,b →∞ . In the latter case we simply denote ( )( )α
+I f x , ( )( )α

+ f xD  for the left RL 

fractional integral and derivative respectively and( )( )α
−I f x ,( )( )α

− f xD  for the right RL 

fractional integral and derivative respectively. In literature the RL operators in unbounded 
domain are termed as Weyl operators. From the above definitions it follows that RL fractional 
integrals and derivatives are neither else than convolution integrals whose kernel is of power 

law type( ) 1

x
α

ξ
−

− interpolating derivatives and integral of integer order. At this point we may 

wonder the reason for calling such convolution operators fractional integrals and derivatives 
instead of  convolutions with power law kernel. The reason is that it may be demonstrated that 
all the rules of classical differential calculus still hold for RL and Weyl fractional operators 
including Leibniz rule and integration by parts 2,3 this statement is of fundamental importance 
to operate with fractional calculus. 
Such an example 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

;

;

a a a aa a

a aa

f x f x I I f x I f x

I f x I f x

α β α β α β α β

α β α β α β

± ±

±

+ +
± ± ± ±

−
± ±

= =

= >
⋮

D D D

D  (7) 

Another fundamental remark that open the way to very interesting results is the fact that 

eqs.4÷7 remain meaningful for complex order iγ ρ η= +  ( , , 1iγ ρ η+= ∈ ∈ = −ℝ ℝ ). 

In this case the integer value of the derivative in eqs.(6) has to be rewritten as 1m ρ = +   . 

3 FOURIER TRANSFORM OF RL FRACTIONAL INTEGRALS AND 
DERIVATIVES  

Let us define the Fourier transform of a function ( )f x  as  

( ) [ ] ( ) ( )ϑ ϑ ϑ
∞

−∞

ℑ = =   ∫ ˆf x ; exp i x f x dx f  (8) 
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where ( )ϑf̂  is the Fourier transform of( )f x . Integration by parts lead to affirm that for 

Fourier transformable functions the following relationships  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )ϑ ϑ ϑ ϑ ϑ ϑ   ℑ = − ℑ =   
m mm mˆ ˆf x ; i f ; I f x ; i fD  (9) 

hold true. Moreover it may be easily demonstrated that for Fourier transformable functions we 
have 

( )( ) ( ) ( )γγ ϑ ϑ ϑ±
 ℑ =  ∓ ˆf x ; i fD ; ( )( ) ( ) ( )γγ ϑ ϑ ϑ±

 ℑ = ± 
ˆI f x ; i f ;   iγ ρ η= + ;  0ρ > (10) 

This very interesting result shows that RL fractional operators behave like the Fourier 
transform of classical derivatives and integrals. Analogous results are obtained for Laplace 
transforms3, that is, considering ( )F s  the Laplace transform of ( )f t as  

( ) ( )( ) ( )
0

;
∞

−= = ∫
stF s L f t e f t dt s ∈ ℂ  (11) 

Laplace transforms ( )⋅L of fractional integrals and derivative are given in the form 

( )( ) ( ) ( )( ) ( )0 0
;α α α α

+ +
−= =L I f t s F s L D f t s F s  (12) 

4 PITFALLS IN THE CLASSICAL THEORY OF VISCO-ELASTICITY 

Let us start with the derivation of the Duhamell integral of the simplest linear system that is 
the Kelvin visco-elastic model shown in Fig.(1) 
 

             
        Figure 1. Kelvin model of visco-elastic system  

Such a model is constituted by a spring with constant K  and a dashpot characterized by a 

damping coefficient C  and then the force exerted by the spring is ( )Ku t and the force 

exerted by the dashpot is ( )Cu tɺ , being ( )u t and ( )u tɺ  the relative displacement and velocity 

between A and B, respectively. Now let us consider a De Saint Venant visco-elastic bar of 

cross A in traction with quasi-static load( )N t , each elementary volume is loaded 

by ( )t dx dyσ (Fig.(2)). By denoting asE the elastic modulus and c the viscosity coefficient we 

get for each elementary volume 

C

( )U tK

( )u t

A B
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( ) ( ) ( )du t du t
t E c

dz dz
σ = +

ɺ
 (13) 

Then by denoting with ( )du t dz , the strain ( )tε , the constitutive law, for the visco-elastic 

Kelvin model reported in Fig.1,is simply rewritten as  

( ) ( ) ( )t E t c tσ ε ε= + ɺ  (14) 

 

 
Figure 2. De Saint Venant  visco-elastic bar in traction and an elementary volume 

Inspection of eq.(14) reveals that constitutive law is ruled by ordinary differential equation in 

the unknown ( )tε . On the other hand the response to an unitary external load ( ) ( )N t U t= , 

( ( ) ( )1, 0; 0, 0U t t U t t= ∀ ≥ = ∀ < ), denoted as ( )J t  is given as 

( ) ( )( )( )1
1 exp 1 0J t t EJ

E
β

 
  = + − − +    

 (15) 

Being E cβ = and ( )0J  the value in 0t = for an unitary stress load. ( )J t  is termed in 

literature as creep compliance function. It is obvious that the impulse response function is the 
derivative of eq.(15), that is  

( ) ( ) ( )( )1
exp 1 0h t J t t EJ
c

β = = − −  
ɺ  (16) 

It follows that the response to an arbitrary load history ( )tσ  is given in the Duhamell form 

( ) ( ) ( )
0

1
t

t J t d
c

ε τ σ τ τ= −∫ ɺ  (17) 

Analogous result may be found using Boltzmann’s superposition principle4. The convolution 
integral in eq.(17) is a hereditary one in the sense that the actual displacement (due to the 

external load) depends on the entire past load history ( )tσ .  

x 

y 

z 

N(t) 

N(t) dx 

dy 
( )σ t

 

( ) ( )σ =
N t

t
A

 

dz
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At this stage it is necessary to make some comments: i) the creep compliance function does 

not come in a natural way because of the presence of ( )0J  that affects the result as shown in 

eq.(17). Following the physics of the problem ( )0J  is assumed to be the instantaneous elastic 

response and then ( ) ( )0J U t E= ; ii) the solution of eq.(15) performed step-by-step only 

requires the actual value of the load in 
j
t and the knowledge of the state variable ( )jtε  in 

order to predict the state variable in 
j
t t+∆ ; iii) the kernel in the Duhamell integral, coming 

from a linear differential equation is of exponential type. The latter behaviour happens for 
more refined models like Burgers model5 or any other various combinations of spring and 
dashpot like generalized Maxwell or Kelvin models; this is due to the fact that such refined 
models are governed by linear differential equations, and the homogeneous solution of such 

equations remains of the type ( )
1

exp
m

k k
k

a tλ
=
∑  being 

k
λ  the eigenvalues of such ordinary 

differential equations and m the number of dashpots present in the model  ; iv) observation of 
Fig.(3) in which the creep compliance of the Kelvin model reveals that in 0t =  there is a 
slope discontinuity in 0t =  and for time  t →∞  there is an asymptotic value. More refined 
models based on various combinations of springs and dashpots always show similar 
behaviour that do not follow experimental evidence. 
None of these conclusions in using linear differential equations strictly follow experimental 
tests. 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure 3. creep compliance of the Kelvin model  

Figure 3. Creep compliance of the Kelvin model  

On the other hand6 Nutting (1921) from experimental data observed that for assigned 
constσ = , ( 0t∀ ≥ ) 

( ) rJ t b tασ=  (18) 

that is known as Nutting equation for nonlinear visco-elasticity. In eq.(18) the parameters, b , 
r ,α  are determined from experimental tests. For  1r =  we have the linear visco-elastic 

 

( )U t

E

( )J t  

1/c 

( )U t

E
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material. Scott-Blair7, used eq.(18) for various soft materials (such as rubber) yielding a 
satisfactory description of the short-time creep data of these materials. 

5 FRACTIONAL MODEL OF LINEAR VISCO-ELASTIC MATERIAL 

In this section it will be shown that, by using the Nutting law to describe the stress-strain 
relation, the fractional model of linear visco-elasticity comes out in a natural way. It has to be 
stressed that such a model has been proposed by several authors. Scott Blair7 was the first 
author that used fractional derivative in the constitutive law. The common motivation for 
describing the constitutive law using fractional derivatives is that, visco-elastic materials 

exhibit an intermediate behaviour between pure solid (stress is proportional to the strain ( )tε ) 

and pure fluids (stress is proportional to ( )tεɺ ) then such intermediate behaviour between pure 

solids and pure fluids may be described by an “intermediate” operator that is the fractional 
derivative as 

( ) ( )( )
0

t E tα

α
σ ε+= D  (19) 

where E
α

is  an anomalous Young  modulus ( 1 2E Ft Lα
α

−   =       ). 

This equation is known as Scott-Blair formula. Generalization of this formula to many 
parameters may be found in literature8,9,10,11,12 , just to cite few. A pertinent bibliography on 
this topic may be found in the book of Podlubny1 (1998). Once eq.(19) or a more refined 
models involving a summation of fractional derivatives at the right hand side of eq.(19) the 
problem relies on determining the parameters in the fractional differential equation. 
Hereinafter it will be shown that both from creep or relaxation tests the parameters may be 
found in a very simple way. 
Let us start with the Nutting formula with 1r =  (linear visco-elastic model). The creep 
compliance function is neither else that the response of the system to a unit step function, then 
its derivative is the impulse response function (if we let 1σ = , 0t∀ ≥ ), that is 

( )
1

d J t
b t

dt

αα −=  (20) 

then the Duhamell integral is written in the form 

( ) ( ) ( )
( )

( )
( )

1

1
0 0

( )
α

α

α α σ τ
ε α τ σ τ τ τ

α τ
−

−

Γ
= − =

Γ −∫ ∫
t tb

t b t d d
t

 (21) 

setting ( ) ( )1

α α α− = Γc b eq.(21) may be rewritten in the form 

( )( )
0

1
( ) α

α

ε σ+=t I t
c

 (22) 

the latter, using eq.(7) may be recast in the form 

( ) ( )( ) ( )( )0 0

α α
α ασ ε ε+ += =t c t E tD D  (23) 

that coalesces with the Scott-Blair equation being α α=E c . Eq.(23) remains valid for a 

quiescent system at 0t = . In simple words, as soon as we assume the Nutting formula 
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specialized for the linear case (eq.18), then by using the classical definition of dynamics of 
Duhamell integral, the fractional derivative in the constitutive law comes out in a natural way. 
Now we are able to predict the parameters αE , α  from the test giving the creep compliance. 

That is from experimental test, by using a classical best fitting procedure b and αof the 

Nutting equation may be determined, in turn ( )( ) 1

α α α −
= ΓE b  may be determined as well. It 

is worth stressing that α  remains the order of the fractional derivative. 
On the other hand, often tests are performed giving the relaxation modulus ( )Ψ t , that is the 

stress history due to an assigned (constant) strain. In this case the relaxation modulus for 
visco-elastic material is found to be well fitted by the power law equation 

( ) [ ]0 0 2
 ;0 1 ;

β
β β−Ψ = Ψ < < Ψ = N s

t t
L

 (24) 

Denoting with ( )J s and  ( )Ψ s the Laplace transform of the creep compliance and relaxation 

modulus, respectively, it follows that the Laplace transform of eq.(24) is simply written as 
 

( ) 0  
β

ΨΨ =
+

s
s

 (25) 

Since  ( )J s and  ( )Ψ s  are related each another by the relationship13  

( ) ( ) 2

1Ψ =s J s
s

 (26) 

then 

( ) 2
0

 
β+=

Ψ
s

J s
s

 (27) 

whose Laplace transform gives 

( ) ( ) ( )0 1 3

β
α

α α
= =

Ψ Γ − Γ −
t

J t bt  (28) 

being ( ) ( )0

1

1 3α α
=

Ψ Γ − Γ −
b and α β= . It follows that from the relaxation test, by means 

of a best fitting procedure, 0Ψ and β  are readily found and with the aid of the latter 

expression both b and α . For defining the creep compliance, remain determined. Notice that. 
for 0α = eq.(23) is written as ( ) ( )0σ ε=t c t  that is the constitutive law of a spring (solid) is 

restored, while for 1α = eq.(23) is written as ( ) ( )1σ ε= ɺt c t  that is the constitutive law of a 

dashpot (fluid) is restored. Eq.(23) obtained from experimental test with α ∈ ℝ is then an 
intermediate model between pure solid and pure fluid.  

From results in this section we may state that as soon as from experimental test on the 
visco-elastic material in terms of creep or relaxation function is well fitted with a power law, 
then the hereditary integral for the representation of the response both in terms of stress or 
strains is a fractional operator. 
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6. CONCLUSIONS 

It is widely understood that the constitutive law for visco-elastic solids involves fractional 
operators. The common motivation for introducing such operator is that visco-elastic 
materials exhibit an intermediate behavior between pure solid and pure fluid and then such an 
intermediate behavior is well fitted by using an intermediate operator that is the fractional 
operator. In this paper it is shown that by assuming the Nutting equation for the creep 

compliance function ( )J t  ( ( ) rJ t b tασ= ) then the constitutive law of the visco-elastic 

system is governed by a Riemann Liouville fractional operator, whose order α  coalesces with 
the real exponent of the Nutting equation . 
It is also shown that by using Nutting equation for the creep function, the relaxation modulus 
is also of power law type whose coefficients (intensity and exponent) are strictly related to 
those of the creep compliance. It follows that by a simple creep test (or relaxation test) by 
means of a best fitting procedure we may easily evaluate the parameters of Nutting equation 
and then the fractional differential equation. 
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