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Abstract. In this study the theory of distributions is adapto find closed form solutions of
the static governing equations of non-uniform EuBmrnoulli beams. In particular, the
solutions are obtained as limit cases of multi-ategorm beams. According to the proposed
approach, non-uniform beams in presence of an tyithnumber of singularities modelled
as unit step functions or Dirac’s deltas can alsotbeated. The latter cases provide closed
form solutions of non-uniform beams, whose flexstéfness is not differentiable, showing
discontinuities in the curvature and the slope fiorts, respectively.

Sommario. Questo lavoro considera la teoria delle distribargiallo scopo di determinare la
soluzione esatta in forma chiusa delle equaziofindeave di Eulero-Bernoulli in regime
statico. In particolare, le soluzioni sono ottenai@me caso limite di una trave soggetta a
discontinuita multiple. Mediante I'approccio progossono anche trattate travi non-uniformi
in presenza di un numero arbitrario di singolarithodellate con distribuzioni gradino
unitario e delta di Dirac. Il caso di singolaritagdellate con delta di Dirac fornisce soluzioni
in forma chiusa di travi non-uniformi la cui rigidea flessionale non € una funzione
differenziabile e conduce a discontinuita sia nellevature che nelle rotazioni.

1 INTRODUCTION

Engineering applications requiring the adoptionnoh-uniform beams aim at different
aspects such as optimization of weight distribyti@anchitectural and functional tasks,
improvement of internal stress distribution, etteflefore, the study of procedures for the
analysis of beams with variable flexural stiffnesn be of great interest in mechanical,
aeronautical and structural engineering fields.
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The governing equations of non-uniform beams sidjeto static loads were originally
treated by means of iterative procedures and g@@rted in standard text bodis However,
analytical solutions have been proposed in thealitee by several authors under the
hypothesis that the variable flexural stiffnessésond-order differentiabé Some of the
latter procedures regard particular boundary candit others are more general and require
the knowledge of fundamental solutions. In any casmeralization to non differentiable
variable flexural stiffness is not allowed everpinesence strong singularities.

The presence of discontinuities superimposed ont@rauniform flexural stiffness has
been treated in the past in the space of the geretdunctions (distribution8) In particular,
the bending of non-uniform beams with jump discaumties has been formulated without the
need of partitioning the beam into continuous segmehowever, besides the boundary
conditions, enforcement of continuity at each siagty is yet required.

Aim of this work is providing the exact deflectidnnction for non-uniform beams with
flexural stiffness models which are second-ord&edintiable and subsequently generalizing
the solution in presence of flexural stiffness siagties without enforcement of any
continuity condition.

Recently the authors treated the case of unifoexufial stiffness in presence of single and
multiple singularities by making use of the disttibn theory, and provided closed form
solutions for different types of singularit’éd In this paper the latter closed form solutions
are considered and generalized for the case ofundarm beams with non-differentiable
flexural stiffness. In particular, it is shown diy that the model showing abrupt changes in the
flexural stiffness can be conveniently adoptedréatt multi-step beams. Hence, the solution
of non-uniform beams is obtained as the limit catere the number of flexural stiffness
discontinuities tends to infinity. The explicit stibn for non-uniform beams is proposed in
integral form and is shown to hold in presencd@fural stiffness discontinuities.

Furthermore, the model of uniform beams in presearidéexural stiffness discontinuities
and slope discontinuities is considered to obtéser form solutions of non-uniform beams
with internal hinges.

The presented closed form solutions are adoptegrovide explicit expressions for
different non-uniform beams with different extert@hd functions. A numerical application
to a non-uniform beam with a non-differentiablextleal stiffness due to the presence of
different singularities is presented. Finally, ttese of a beam showing non-uniform flexural
stiffness distributions due to the presence of eatrated cracks is also analysed.

2 GOVERNING EQUATIONS OF THE NON-UNIFORM EULER-BERNOULLI
BEAM

The governing equations of the Euler-Bernoulli beamwritten as follows:

VI=-a® , M(3=M3 ,

__M&
A= ERI0

XX)=4' (%, #()=-U(® .

(1)

where q(x) is the external transversal load{x) and M(x) are the shear force and the
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bending moment, respectively(x), ¢(x) and y(x) are the deflection, slope and curvature
functions, respectivelyE(X) and | (x) are the Young's modulus and the inertia moment,

respectively, and the prime denotes differentiatiath respect to the spatial coordinate
spanning from 0O to the length of the beam.

Combining the equilibrium, constitutive and compdity equations given by Egs. (1)
yields to the following fourth order differentiadjeation:

[EI00d (] =3 . )

Eq. (2) is the governing differential equation bk tEuler-Bernoulli beam with variable
flexural stiffnesse(x) [(X) .

In this study, in order to propose an integratioocpdure of Eq.(2) for any flexural stiffness
function, the following piecewise constant flexuséiffness model is adopted:

[E®1(3],, = EO) I(O)[l—iyiu(x— rw)} ©)

where U (x—xyyi) is the unit step distribution, also known in tliterbture as Heaviside’s
function, showing a discontinuity at the abscisga and defined asU (x-x,,)=0 for
x<x,;,andU (x—xyyi)=1 for x>x ;. Furthermore, the scalar parametgrs i =1K ,n,
appearing in Eq. (3) provide the intensities offtegural stiffness jumps at abscissgg .

According to Eq. (3), by chosing abscissge such thatx,; - x,;, =Ax for i =1K ,n, the
beam results subdivided intot+1 uniform stubs of equal lengti#sx = L/(n+1) with constant

i-1
flexural stiffness given byg I, = E(0)I (O){l—Zka (x— Xy,k):|' for i=1K ,n, as depicted
k=1

in Fig.1.

A E A
X,; = 1AX
4 V

Figure 1: An approximate piecewise model of a noifeum beam
It has to be noted that, for the flexural stiffres$E 1, to be non negative, the only

constraints to be imposed on jump intensifiesire: Zyj <1,i=1K n.
j=1
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3 INTEGRATION PROCEDURE FOR NON-UNIFORM EULER-BERNOULLI
BEAMS

In this section the flexural stiffness model addgteEq. (3) is considered for integration of
the governing differential equation (2) and it wile shown how the explicit solution
concerning beams with continuously varying flexwst#ffness can be inferred.

Let us consider a non uniform Euler-Bernoulli beamth variable flexural stiffness
E(X) 1(X), governed by Eqg. (2). An approximate expressiothefflexural stiffnes€(x) I(X)

can be given by the piecewise model in Eq. (3) shahat the abscissas= x,; the exact and
approximate flexural stiffness assume the sameevBlx,;)I1(x,;). In view of the adopted
flexural stiffness model, the following positionsncbe accounted for:

X,; =iAx
EQI0)=El, . E®)IIKX;)=El , @)
_E.lL—El
TR
The limit of Eq. (3) forn - o can be written as follows:
im[EQY109],, = Bl lim Y5225 U (e, Jae .
5

|
=EO)(0)+ [[E@)I €)] U (x=¢&)dé = E(X)1(X
0
where Egs. (4a-c) have been accounted for. AccortinEq. (5), the flexural stiffness
E(X) I1(X) is recovered as the limit of the piecewise modelf - « hence forAx - 0.

In view of the property obtained in Eq. (5) the koipsolution of the Euler-Bernoulli beam
with the approximate model given by Eq. (3) cardl¢a the solution of the non uniform
beam.

For the adopted approximate expression of the flxstiffness given by Eq. (3), the
governing equation (2) assumes the following form:

{Eolo(l—gyiu(x—xw)j qj'w(x)}” = o3 (6)

whereu,,(X) is the approximate deflection function of the beam

As recently shown in the literatdfghe closed form solution of Euler-Bernoulli beams
subjected to abrupt changes of the flexural stifén@re governed by Eq. (6) and the following
closed form expression of the approximate deflactimction can be obtained:
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Up(X) = G+ G XH ‘%{ >%+im;4u+1( o k) U x %)}r

+C4[X3+i%w+1(x3—3>ﬁ X2 ) U zs,)} (7)
¢ R HC AR E DI Ea
(x)+z " YVEOIO 0 5) (-x,)

In Eq. (7)c, c,, C;, C, are integration constantg’/(X) denotes a function evaluated as a
primitive of orderk of the external transversal load functigix) and the following position
have been accounted for:

1 I
H=—a - Eolo ' 8
1‘21’; Ei—l i-1 ( )
j=1

According to Eg. (5) the non uniform flexural stiéfss has been obtained as the limit of a
discontinuous model, hence, in view of the lingaat the problem, the deflection function
u(x) of the non-uniform beam with flexural stiffne€x)1(x) can be obtained from the

approximate deflection function,, (X) by taking the limit forn — « of Eq. (7) as follows:

u(x¥) = lim u,, (3 = g+ ¢ % g{ %+ IgghmZ%( x %)2 § x l)l():|+

+C{X3+E°Ihm,i(EjI:lw(xg 3%, x+ 2%, ) Y x ;;,)} (9)
CIN I \
HE RS e - d0s- e 5] e )

where the positions given by Egs. (4) and (8) Haeen accounted for.
By solving the limits appearing in Eq. (9) the &olling closed form of the deflection
function of the non-uniform Euler-Bernoulli beanmpistained:

[E@1&)] (
(E@1©)

u(x) =g+ ¢ x+ q(ﬁ K0) (0 )j x&) U x¢) g |+

{ -~ E0)1(0 )j [E(g:g (% -a2x+ 22) U( x-&) o |+ (10)

, 47 I[E(f)l(a]
EQO)I(0) 5 (E@)I(&))

Eq. (10) can be further simplified, by means oégration by parts, as follows:

(19 -dh@) - dH@)(x-€)) U( &) F
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~&)&
u(x) = g+ G x+26 HO) 1(0)j ¢ + 6¢ HO) (01 ¢+
E()I E(S)I
s X(? (f) A1) an
— @& d
coi0 Eene” ©%

Subsequent differentiations of the deflection fiorctgiven by Eq. (11) provide the
following closed form expression for the slope amulvature functions of the non-uniform
beam, respectively:

p(x)=-u (X =-¢-2¢ HO) (0)j 6¢ EO) (01 ¢ -

E(E)I(E) E(E)I(E)
_qlo) } q%)
EQ0)I(0) {EE)E)

2
= a7 (¥
X() =-u" (% (2%+69 xt E(O)I(O)j

d¢ (12)

E(0) 1(0)
E()1(x)

It has to be noted that Eqgs. (12), representingskbyge and curvature of the non-uniform
beam can also be recovered by taking the limitrfos « of the corresponding approximate
functions obtained by differentiating the approxiendeflection function given by Eq. (7).
The bending moment function is obtained by multipdythe curvature function given by Eq.
(12 b) by the continuously variable flexural stéBs E(x) [(X) as follows:

(2]
_ __ 97 (%
M (x) = E(X 1(X x(% = - HO) I(O)(2%+ 6¢ x- £(0)| (O)J (13)
Finally, the shear force function is obtained byamof differentiation of Eq. (13) as follows:
(1]
— Ml v — g7(x)
V(¥ =M (¥ =-HO0) |(0)( 6G +—E(O)I (O)J : (14)

It has to be remarked that, since the solutionooiuniform beams presented in this section
has been obtained as the limit of a beam with diticoous flexural stiffness, Eq. (11) holds
also for non-uniform beams where the flexural s&ffs is non-differentiable due to the
presence of flexural stiffness discontinuities,s@as abrupt changes of the material or the
cross-section.

4 THE NON-UNIFORM EULER-BERNOULLI BEAM IN PRESENCE OF SLOPE
DISCONTINUITIES

The piecewise flexural stiffness model adopted gn ) has been shown in the previous
section to be useful in order to obtain the explstlution of non-uniform beams. In this
section the piecewise model introduced in Eq.(3)enmriched by means of additional
distributions such as Dirac’s deltas able to regmesliscontinuities in the slope function and
it will be shown how the explicit expressions of tlesponse functions of non-uniform beams
in presence of slope discontinuities are obtained.

The piecewise flexural stiffness model adopted gn @) to describe abrupt changes of the
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flexural stiffness can be enriched by means ofstifgerposition of Dirac’s delta distributions
centred at abscissag;, j =1K ,m, such thatx, , # x,;, [/, |, as follows:

m

[EX1(¥],,= B 1—iyiu(x— %)= 2. B3 x= %, )} . (15)

j=1

The introduction of Dirac’s deltas into a uniforfeXural stiffness model has been recently
shown to be equivalent to the presence of intennayes endowed with rotational springs
hence leading to discontinuities in the slope fiomct

In this case, the governing equation of a non umf&uler-Bernoulli beam, with variable
flexural stiffness E(X)1(X) in presence of concentrated slope discontinuitas be

approximated as follows:

l:EOIO[l—iZ:yiU(X—&)—Zm:,BjJ(X— &J)j LA@())}” =qx . (16)

The explicit solution of the governing equation \b&s been obtained in a recent work by
employing distribution integration rules involvitige product of Diracs’ deltdsand takes the
following form:

b00=5+ x| 370k Uk x)s258(x 8) € x )]s

+c4[x3+§7i(x3—3xii x+ 2% ) U x zx)wgf% % (x %) 4 x a&)}

17)
My o dT-dix) - 05 (= (
m ad3(x. VM x= %
+|;qu (xﬂ,go(lj %), (x-%, )
where:
Vi=VHBHa (18)
_ 1 : n.
gt
i i=1
AN Vi _
’71"BJ;(l_MﬂjA)(l_MﬂﬂjA)U(Xﬁ,i X) (20)

and & is given by Eq. (8).

The constantA appearing in Egs.(19),(20) arises from the debtnibf the product of two
Dirac’s delta distributions proposed by Bagargifd Bagarello indicates that the product of
two Dirac’s deltas both centredxatcan be reduced to a single Dirac’s delta multtpbg a
constantA. A set of values that can be adopted for the quartitis reported in the
Appendix of the papét
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For the sake of completeness, the stiffnessesof the rotational springs equivalent to the

Dirac’s deltas are here reported as follows; = E; Io/(l,[_z’j) :

Furthemore, besides the relationships introduce&qn. (4) still holding, the following
relationships betweepy , BJ. , 17; and the values of the continuous flexural stiffnsiction
E(X) 1(X) hold:

= _ Bl —El
= E,l,
G R GIY b
E|—1||1 E|| —i
CRR Y e T T G IR o
7 _1 B, E.li.—El —i
B, = (1 A J](l EOIOZ(EI_lII 1)(Ei|i)U(Xﬁ'j IAX)J : (23)

The deflection functioru(x) of the non-uniform beam with non-uniform flexusdiffness
E(X)I1(X) in presence of internal hinges can be obtaineth ftibe approximate deflection
functionu,,(X), given by Eq. (17), by taking the limit far - o, as follows:

u(x)=g+¢x+

el e bmE SB[ g 2B e n) U 1)

o B S S (F55 xe 28 U e g e

+6|_Zm:ﬁj(lim)xﬂ,1(x_ %) U( x5, ) |+ (24)
4] ey — ddx Y= &3¢ x. :
e ELlL-EL d100-dix0-dlop(x ¥) o
Bl 'n'm;(all. NEE &1, g Jaxs
[2]
lim q (X J) Bl |
+'Zﬂ( ) 5E0(| %5 )\J(x—x,,,j)
where:
lim iG E| 1I| -1 E Ii i
n(im) — -
B! [1 ﬁA+E0|0/3 ln wa(E TEAAE _EolcﬂjA)AXU(xﬁ,j iAX) Ax |

(25)

ELli,-El :

1+E,l,lim U(x, —IAX)AX| .
I:E Sl On- lel(E—llu 1)(Ei|i)AX ( . ) ]

where the positions given by Egs. (4), (8), (213)}(Bave been accounted for.

By solving the limits appearing in Egs. (24) an®)(2he following closed form of the
deflection function of the non-uniform Euler-Berdlobeam is obtained:
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() =G+ x+
[E©)1&)] (x
GUG)E

[ (f)l(f)] (%
GG

+6l Zﬁj(lim)xﬁ,J (X = X5 ) U ( X~ %, )} *

L 41 I[E(E)I(E)]
EOIO 5(E@)I(&))

[2
(lim) a ( ﬁJ)(X %5.i ) _
+IZ,B EQ)(0) U (x xﬁ,j)

+G| X = E(0) 10 )j

~&) U(x-¢) &+ Zgﬁi(lim)(x_ )ﬁ,i) U( x %,i)

X = E(0) 1(0 )j

+C

-3 x 2°) U(x-¢) df +

N

(26)

(09 - d4&) - dHO (%= &) U( x-¢) o +

where:

=1 L —e08 j EQOL (0 g
1-BA (E(©)1(6) - E©O)1 (0)8,A)°

[ GIGIN J

(o) (0 | —&)d¢

Eq. (26) can be further S|mpI|fied, by means oégration by parts, as follows:
u(x=g+cxt

+2<:{E<0>|<0)J =616 EdE IR A (x-,)U(x- 5, )}

=L

(27)

f f S n(im 28
+6¢ {E(o)l(o)jE(al()adEH;ﬂf %55 (X%, ) U( % %, )}’ #9)
+<z|“‘1(0>+q‘3](0)x+f x=¢&

) q[Z](Xﬂ,i)(X_ Xﬂ,i)u (x— X, )
E(0)I1(0) s EENE) :

E(0)I(0)

dEde+ 1Y B

where:
1 E(0)(0) E(0)1 (0)5,
| E(Xs ) 1(X5;) E(%;) 1(%;)— EO)I(0)5 A

Subsequent differentiations of the deflection fiorctgiven by Eq. (28) provide the
following closed form expression for the slope amulvature functions of the non-uniform
beam with slope discontinuities, respectively:

ﬂ,(llm)

(29)
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¢(x)=—u'(x)=—<;—2g{ HO) I0)f ———— &+ DB U x- %,;)}-

E($)1(<$) =
- GC{ E(0)! (O)Im dé + @ B %, U(x= %, )} - (30a)

(3 x 2 m (2]
_ q7(0) _'[ a7 (<) df—|z,§j("m)q (Xﬁ’j)U(X—Xﬁ’j) ’

EQ)I(0) EC)NE) = EO)N(O)

(2] m
— () = — q(x) E(0) 1(0) > (lim) _
Y (X) =-u"(%) (2g+69 X+ E(O)I(O)J[E(x)l(x)+ JZ;,B]. J( x %,j)] . (30Db)

The bending moment function is obtained by multipdythe curvature function given by
Eq. (30 b) by the continuously variable flexuralffegess E(X)I(X) in presence of

singularities, and the shear force function is et by means of differentiation of the
bending moment function. For the bending moment thedshear force functions the same
expressions provided by Egs. (13) and (14) concgrthia case of beam without singularities
are obtained. In fact, for statically determina¢ains the bending moment and the shear force
should not depend on the adopted flexural stiffn@ssthe contrary, for statically determinate
beams, the adopted flexural stiffness model witha®s delta singularities will affect the

expressions of the constardsc, appearing in Egs. (13), (14).

5 PARTICULAR CLOSED FORM SOLUTIONS

In this section the closed form solutions preseimettie previous sections for non-uniform
beams in presence of flexural stiffness and sloeodtinuities are particularized for
different variation laws of the flexural stiffnessorder to show how any case can be easily
treated without difficulties concerning with theegration procedure.

For the case of parabolic variable distributed Itd@s following primitive functions of the
external load are considered:

q(x) = q3(1+a'1X+0’2)€)
q[ll(x)zq—g(6x+ X +21,%) , (x):%(6>%+ o, R+a, %) (31)

[y = % 4 =%
a¥(x) 120(20x3+5a1><*+2a2>?) & (9 360(15$t+ 3 x+a, ¥)

wherel denote the beam length. The load parametgrsy, and a, appearing in Egs. (31)
can also be chosen to obtain a uniformly distridutad (@, #0, a, =a, =0) and a linearly
distributed load ¢, #0,a, #0,a, =0).

For the case oh, point loadsR, concentrated at abscissag k=1K .n , the following
primitive functions of the external load are coesetl:
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Np

q(x) = Z 2 O(%= %)

=1

Z U(x-x) , @(Fi P(x ) Ux 3 , (32)

q[sl(x)=23%u(x— 0. 0=y P e p

For the case ofh,, concentrated moments! at abscissae,, s=1K .n,, the following
primitive functions of the external load are coesell:

a09 = M, 8 (x- %)
=M%, =Y M Ux 9 39

F0=3 M 0 0uoe 9 L B I e

s=1
where 6[1](x—>g) indicates the generalized primitive function ofetiDirac’s delta
distribution, called doublet distribution, whichable to model concentrated moments.

5.1 Parabolic flexural stiffness

For a non-uniform beam whose flexural stiffness lawarabolic, the following model is
assumed:

E()1(X) = B I, (1+ kx+ k X) (34)

The flexural stiffness parameteEs|,, k; andk, appearing in Eqgs. (34) can also be chosen
to obtain a uniform beanEjl, # 0, k = k, =0) and a linear beamE,l, # 0,k #0, k, =0).
In this case, if the uniform distributed loag is considered, the governing differential
equation can be obtained by Eq. (2) as follows:

(14 kx+ k) 0 (3+2( k+ 2 ¥ U () 2 K'l( )FE?)O (35)

The solution of the governing equation (35) is ot#d by replacing Eq. (34) into Eq. (11),
and after calculation of the integrals, as follows:

U =G+ox2¢[(kr2k ¥ R ¥- G X+
+6C —[(kl+k2x)G(>9 (lglgxr %—25) R X }+ (36)

+4sz0| [2(kiox+ K- k)(KR3- GR-4K k- kX E)(2 ¢ K

In Eq. (36) the following functions have been defined:
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1 2"‘(‘&"’\/@))(

F(x) = In

2ol =4k, | 2+ (k- /i - 4k ) x 37)

G() =%In(1+ kx+ k %)

Successive differentiations of Eq. (36) leads to:
¢(X)=-U'(><)=-9-4%ls R3-6¢( kR ¥ G X¥-

e L€ 2] FO9- k) + X

M(x)-—E(x)l(wu'(»-—%L(ZQ 6% (38)

2E0Ij
V(x)=M'(x)=—Eel[6c4+Eolxj

By substituting Egs. (38) into Eq. (35), the gowegndifferential equation is identically
satisfied.
5.2 Hyperboalic flexural stiffness

For a non-uniform beam, whose flexural stiffneswasiable with an hyperbolic law, the
following model is assumed:

— IO

E(X) I(X) =— (39)
(I =22

In this case, if a uniformly distributed load x &)y, is considered, the governing

differential equation can be obtained by Eqg. (Zbodisws:

\Y _ 2k || =_9
e O e O (1 k) d(y= E00(1+alw2>?<) (40)

The solution of the governing equation (40) is ot#d by replacing Eqgs. (31) and (39) into
Eq. (11), and after calculation of the integratsfalows:

u(x) = g+ ¢ x+ g(g X+1j X+ g(g xrlj %+

(41)
% (kaz 3+ 2ka1+azxz+ a1+3kx+1j N
24E0| 15 5
Successive differentiations of Eq. (41) leads to:
p(X)=-u(¥=-¢-g( ket2) x ¢2ke3 %
(42)

% {ka2 P CIALAN:

- +(a, +3K) x+ 4} X
24F, |, 5
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M(x)=-E(XQ I(YU (R =- 20+60x—D _(grum wa, i %

(9 ==E()1(d (3 l%l)[ G+6g 12EOIO( ea, ¥

By substituting Eqgs. (42) into Eq. (40), the gowegndifferential equation is identically
satisfied.

6 NUMERICAL APPLICATION TO A NON-UNIFORM BEAM WITH
SINGULARITIES

The closed form solution presented in this workarrthe form reported in Eq.(28) allows
to treat straightforwardly any non-uniform beanpnesence of abrupt changes of the flexural
stiffness and also singularities causing slopeadiisouities, provided that the four integration
constants are evaluated by means of the boundaditmms at both ends of the beam.

As a matter of example, the clamped-clamped nofeumi beam with singularities, and
subjected to a transversal loafx) = g, =40 kN/ mr, uniformly distributed along the entire

span of lenght =5m, has been analysed according to the followinguilakstiffness:

E(X) 1(X) = E0I0(1+ k X+ kzi){l—yu( % ;;)—22;,815( X X, )} (43)
In particular, the beam under study presents abpﬁwflex&ral stiffness with the following
values for the parameters appearing in Eq.(43)=2.06(10 kN /nf, |,=8.57(10°m*,
k =-0.4m*, k,=0.1m?. Moreover, the beam is subjected to an abrupt giaf the
flexural stiffness atx, =2.3m whose intensity is defined by =0.7, and to two internal
hinges atx;, =1.8m, %, = 4.5m endowed with rotational springs whose stiffnesaes

defined by the parametegg =0.18m, 5, = 0.11m, respectively. For the quantit the first

value, A=2.01% evaluated iff, among those proposed‘irhas been chosen. The adopted
flexural stiffness variation is reported in Fig.2.

2.0E+6

El [kNn?] -

1.6E+6 —|

1.2E+6 —|

8.0E+5 —

4.0E+5 —

0.0E+0 ! ‘ ! ‘ ! ‘ ! ‘ !
0.00 1.00 2.00 3.00 400 X[M] 500

Figure 2: The adopted flexural stiffness variation

The closed form soution for the beam under studyeims of transversal displacement, is
directly inferred by Eq.(28) as follows:
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=1

u(x)=q+c;x+2q{( k+2k ¥ R ¥ G )} fﬁf”"”( x x) 0 x ﬁ%)}

+604ki{(k1+k2X)G(>9‘( kot k-2 Bx x XA x( x x) 0 34)}
: (44)

*aepi 2kl K- k)(KRY- GY-4 Kk Kk E)(2 ke KxJx

2] —
2 —im q (Xp,j)(x )%vi)| -
+|JZ:;,3]( ) E(0)1 (0) U (X XB,J)

where F(x), G(X) are given by Egs.(37a), (37b), respectively, #ftP is given by Eq.(29).
The integration constants,,c,,c,, ¢, appearing in Eq.(44) have been determined by
imposing the following boundary conditions:
u@=0 , U@=0 , u@)=0 , U(FC( (45)

and the results, in terms of transversal displacemetation, curvature, bending moment and
shear force have been plotted in Figs.3-7, respygtiand compared to those regarding a
uniform beam with constant flexural stiffneg&gl, and a non-uniform beam with parabolic

flexural stiffnessE(X) 1(X) = E |, (1+ k x+ k, )%) in absence of singularity of any kind.

-6.0E-5

Non-uniform beam with singularities
u [m] 1T - Non-uniform beam
— - —  Uniform beam
0.0E+0 = =
. -~
~. e
6.0E-5 —|
1.2E-4 T T T T T T T T T
0.00 1.00 2,00 3.00 400 X[m] 500
Figure 3: Transversal displacements
8.0E-5
Non-uniform beam with singularities
p[rad] 9
fffff Non-uniform beam
4.0E-5 1 - = Uniform beam
- - - - — \\‘
> ™)
0.0E+0 — -
N 7 -~
-4.0E-5 —
-8.0E-5 T T T T T T T T T
0.00 1.00 2.00 3.00 400 X [m] 5.00

Figure 4: Rotation function
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-1.4E-4
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fffff Non-uniform beam
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0.0E+0 = 4
= e
7.0E-5 —|
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Figure 5: Curvature function
-1.5E+2
M [kNm] - —— Non-uniform beam with singularities
fffff Non-uniform beam
-1.0E+2 —|
— - —  Uniform beam ,
I L,/
\ o
SOEHL N\ 7
AN ./
\ L
B . s
AL .
K ’ /
0.0E+0 - :
N
5.0E+1 ‘
0.00 1.00
Figure 6: Bending moment
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Figure 7: Shear force
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7 NON-UNIFORM BEAMSDUE TO THE PRESENCE OF DAMAGE

Variations of geometrical and structural paramesdoag the beam span are often caused by
the presence of both concentrated and diffused gembn particular, the presence of
concentrated cracks along the beam span can bendimolead to a stiffness reduction in a
beam segment of finite width, whose extension atehsity can be obtained by means of the
theory of fracture mechanics or from a definitidntle “ineffective area” so as to define a
distributed damage mod&f®. The models for the concentrated cracks, as lengamage
evolution is not accounted for, can hence be tceadthin the context of the theory of beams
with non-uniform geometrical and physical paranmet&he theory and the exact closed form
solutions presented in this work can hence be addptanalyse some of the different damage
models available in the literature.

The effect of a single crack of depth, concentrated at the abscisgaof the beam, can be

represented by a variable flexural stiffndssq) 1(x) as follows:

E(X)1(¥)=El, 9(% (46)
where theg(x) function is able to describe the flexural stiffe@crement in the vicinity of
the crack. In this context, the influence of a kran a rectangular cross-section of height
by neglecting the change of the neutral axis inibimity of the crack, will be considered. In
particular, the ratio of the flexural stiffness walE_I. at the cracked cross-section to the
undamaged valug,l, will be denoted ag_ =(d-d,)*/ ¢’. FurthermoreL_ denotes the so-

called “effective length” accounting for the influge of the cracked cross-section on the
flexural stiffness of the beam.
The damage models provided in the literature dfifem one another for the expression of

the g(x) function and for the amplitude of the effectivadén L. .
Cerri and Vestront* proposed a uniform variation of the flexural stébs provided as

follows:
1 for xs<x-L
g0 =1 for x-L<x<x+ L (47)
1 for x2x +L,
where the effective length has been consideredermtdent of the crack depth and assumed as

L, =1.5d.
Sinha et al*’ proposed a linear variation of the flexural s&fs provided as follows:
1 ¢ - L
or X< x -
X_
9(® =1 +(1- gﬁ%" for x- L<x< x+ L (48)
1 ¢ for x=x +L

where the effective length is evaluated as followcs.:g n g°l with a =0.667.
a g.-
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Bilello®®, on the basis of photoelastic analysis, confirnbgdnumerical finite element
analysis, considered a triangular shaped “ineffectarea” in the vicinity of the crack,
subjected to very low stress, leading to a cubitatian of the flexural stiffness provided as
follows:

1
_opye for xsx - L
900 = (#@(Pﬁ)ﬁ%"} for x- < x< x+ L, (49)
) ¢ for x=x + L,

where the effective length is given Bs= (;ng.

An exponential variation of the flexural stiffnedge to the presence of a crack has been
proposed by Christides and B&rand Shen and Pieffas follows:

9.
9. +(1-g.) @x;{_ 2,|X‘d>%|J (50)

where no effective length has been introduced hedvalue of the parameter, ruling the
exponential law, has been obtained by experimeémalstigation asr = 0.667 by Christides
and Bart® and a =1.93€ by Shen and Piert®

The damage models reported in this section canebéed in the context of the non-uniform
beam analysis. The solution proposed in this wank fon-uniform beams can hence be
adopted in order to provide a comparison regarthiegdifferent damage models in terms of
resulting transversal displacements.

A simply supported beam with length=1800mm and rectangular cross-section (width

b =50mm height d = 25mm) in presence of a single crack concentrateck.at 0 b2
with two different values of crack depth = 6.26n ,12rtm has been considered. In Fig.8
the different damage models reported in this sedtiave been adopted to treat the case of
crack depthd, = 6.28nm correspondent t@5 % damage percentage. In particular in Fig.8a
the different flexural stiffness distributions haween depicted; in Fig.8b the relevant
transversal displacement, normalised with resp@dh¢ maximum displacemeni, of the
undamaged beam, showing small differences, have fle&ed.

In Fig.9 the results concerning the case of cragildd, = 12.5mm correspondent t&0 %
damage percentage are reported. In particulargro&iand 9b the different flexural stiffness
distributions and the relevant transversal disptea®, normalised with respect to the
maximum displament, of the undamaged beam, respectively, have beéteglc\ccording

to Figs.8b and 9b, the results provided by theediiit damage models show differences
increasing with the damage intensity.

ag(x) =

8 CONCLUSIONS

The problem of integration of the static governaggations of non-uniform Euler-Bernoulli
beams has been treated in this study. The gesgplctit solution, requiring the evaluation of
four integration constants dependent on the boyndanditions, has been presented. The
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solution has been obtained as the limit of the cdsaulti-stepped beams, as a consequence
the solution has been extended to non-uniform beapresence of abrupt changes of the
flexural stiffness. Furthermore, singularities dadhe presence of Dirac’s delta distributions
has been also introduced in the model to treatetluases in which internal hinges with
rotational springs are present along the beam dpaany case, the proposed integration
procedure leads to general closed form solutiorthont enforcement of any continuity
condition along the beam span and only four intigmaconstants are to be determined.

The presented closed form solutions are adoptguiaaide explicit expressions for different
non-uniform beams with different external load ftimes. A numerical application to show
the efficiency of the proposed solutions to a naifeum beam with a non-differentiable
flexural stiffness due to the presence of differ@ngularities has been presented. Finally, the
case of a damaged beam subjected to concentratedgda has been treated within the
context of non-uniform beam analysis. In fact, adow to the damage models available in
the literature, the effect of concentrated cracks be treated as a non-uniform flexural
stiffness distribution.

(a)

EO ------ Sinha et al.

= 0.5 __Christides & Barr
0.25 ~"Bilello |

—Cerri & Vestroni

0 0.2 0.4 0.6 0.8 1
x/L

0.5 (b)

u/u
o
SL

|

-1.5 ! ! ! !

0 0.2 0.4 0.6 0.8 1
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Figure 8: Beam with a concentrated crack correspoitd 25 % damage percentage: a) flexural stiffness
distribution; b) transversal displacements
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Figure 9: Beam with a concentrated crack correspoitd 50 % damage percentage: a) flexural stiffness
distribution; b) transversal displacements
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