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Abstract. In this study the theory of distributions is adopted to find closed form solutions of 
the static governing equations of non-uniform Euler Bernoulli beams. In particular, the 
solutions are obtained as limit cases of multi-step uniform beams. According to the proposed 
approach, non-uniform beams in presence of an arbitrary number of singularities modelled 
as unit step functions or Dirac’s deltas can also be treated. The latter cases provide closed 
form solutions of non-uniform beams, whose flexural stiffness is not differentiable, showing 
discontinuities in the curvature and the slope functions, respectively.  

Sommario. Questo lavoro considera la teoria delle distribuzioni allo scopo di determinare la 
soluzione esatta in forma chiusa delle equazioni della trave di Eulero-Bernoulli in regime 
statico. In particolare, le soluzioni sono ottenute come caso limite di una trave soggetta a 
discontinuità multiple. Mediante l’approccio proposto sono anche trattate travi non-uniformi 
in presenza di un numero arbitrario di singolarità modellate con distribuzioni gradino 
unitario e delta di Dirac. Il caso di singolarità modellate con delta di Dirac fornisce soluzioni 
in forma chiusa di travi non-uniformi la cui rigidezza flessionale non è una funzione 
differenziabile e conduce a discontinuità sia nelle curvature che nelle rotazioni.  

1 INTRODUCTION 

Engineering applications requiring the adoption of non-uniform beams aim at different 
aspects such as optimization of weight distribution, architectural and functional tasks, 
improvement of internal stress distribution, etc. Therefore, the study of procedures for the 
analysis of beams with variable flexural stiffness can be of great interest in mechanical, 
aeronautical and structural engineering fields.  
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The governing equations of non-uniform beams subjected to static loads were originally 
treated by means of iterative procedures and are reported in standard text books1,2. However, 
analytical solutions have been proposed in the literature by several authors under the 
hypothesis that the variable flexural stiffness is second-order differentiable3-7. Some of the 
latter procedures regard particular boundary conditions, others are more general and require 
the knowledge of fundamental solutions. In any case, generalization to non differentiable 
variable flexural stiffness is not allowed even in presence strong singularities. 

The presence of discontinuities superimposed onto a non-uniform flexural stiffness has 
been treated in the past in the space of the generalized functions (distributions)8. In particular, 
the bending of non-uniform beams with jump discontinuities has been formulated without the 
need of partitioning the beam into continuous segments; however, besides the boundary 
conditions, enforcement of continuity at each singularity is yet required. 

Aim of this work is providing the exact deflection function for non-uniform beams with 
flexural stiffness models which are second-order differentiable and subsequently generalizing 
the solution in presence of flexural stiffness singularities without enforcement of any 
continuity condition. 

Recently the authors treated the case of uniform flexural stiffness in presence of single and 
multiple singularities by making use of the distribution theory, and provided closed form 
solutions for different types of singularities9,10. In this paper the latter closed form solutions 
are considered and generalized for the case of non-uniform beams with non-differentiable 
flexural stiffness. In particular, it is shown, first, that the model showing abrupt changes in the 
flexural stiffness can be conveniently adopted to treat multi-step beams. Hence, the solution 
of non-uniform beams is obtained as the limit case where the number of flexural stiffness 
discontinuities tends to infinity. The explicit solution for non-uniform beams is proposed in 
integral form and is shown to hold in presence of flexural stiffness discontinuities. 

Furthermore, the model of uniform beams in presence of flexural stiffness discontinuities 
and slope discontinuities is considered to obtain closed form solutions of non-uniform beams 
with internal hinges.  

The presented closed form solutions are adopted to provide explicit expressions for 
different non-uniform beams with different external load functions. A numerical application 
to a non-uniform beam with a non-differentiable flexural stiffness due to the presence of 
different singularities is presented. Finally, the case of a beam showing non-uniform flexural 
stiffness distributions due to the presence of concentrated cracks is also analysed.    
 

2 GOVERNING EQUATIONS OF THE NON-UNIFORM EULER-BERNOULLI 
BEAM 

The governing equations of the Euler-Bernoulli beam are written as follows: 

( ) ( ) , ( ) ( ) ,V x q x M x V x= − =I I  
( )

( ) ,
( ) ( )

M x
x

E x I x
χ =  

( ) ( ) , ( ) ( ) ,x x x u xχ ϕ ϕ= = −I I  

(1) 

 
where ( )q x  is the external transversal load, ( )V x  and ( )M x  are the shear force and the 
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bending moment, respectively, ( )u x , ( )xϕ  and ( )xχ  are the deflection, slope and curvature 
functions, respectively, ( )E x  and ( )I x  are the Young’s modulus and the inertia moment, 
respectively, and the prime denotes differentiation with respect to the spatial coordinate x 
spanning from 0 to the length L  of the beam. 

Combining the equilibrium, constitutive and compatibility equations given by Eqs. (1) 
yields to the following fourth order differential equation: 

( ) ( ) ( ) ( ) .E x I x u x q x  = 
IIII  (2) 

Eq. (2) is the governing differential equation of the Euler-Bernoulli beam with variable 
flexural stiffness ( ) ( )E x I x .  

In this study, in order to propose an integration procedure of Eq.(2) for any flexural stiffness 
function, the following piecewise constant flexural stiffness model is adopted: 

[ ] ( ),
1

( ) ( ) (0) (0) 1
n

i ipw
i

E x I x E I U x xγγ
=

 = − − 
 
∑  (3) 

where ( ),iU x xγ−  is the unit step distribution, also known in the literature as Heaviside’s 

function, showing a discontinuity at the abscissa ,ixγ  and defined as: ( ), 0iU x xγ− =  for 

,ix xγ< , and ( ), 1iU x xγ− =  for ,ix xγ> . Furthermore, the scalar parameters iγ , 1, ,i n= K , 

appearing in Eq. (3) provide the intensities of the flexural stiffness jumps at abscissae ,ixγ . 

According to Eq. (3), by chosing abscissae ,ixγ  such that , , 1i ix x xγ γ −− = ∆∆∆∆  for 1, ,i n= K , the 

beam results subdivided into 1n+  uniform stubs of equal length: /( 1)x L n= +∆∆∆∆  with constant 

flexural stiffness given by ( )
1

,
1

(0) (0) 1
i

i i k k
k

E I E I U x xγγ
−

=

 = − − 
 
∑ , for 1, ,i n= K , as depicted 

in Fig.1. 
 

 

 l 

,ix i xγ = ∆  

x∆  

 x 

i iE I  

 
Figure 1: An approximate piecewise model of a non-uniform beam 

It has to be noted that, for the flexural stiffnesses i iE I  to be non negative, the only 

constraints to be imposed on jump intensities iγ  are: 
1

1
i

j
j

γ
=

≤∑ , 1, ,i n= K . 
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3 INTEGRATION PROCEDURE FOR NON-UNIFORM EULER-BERNOULLI 
BEAMS 

In this section the flexural stiffness model adopted in Eq. (3) is considered for integration of 
the governing differential equation (2) and it will be shown how the explicit solution 
concerning beams with continuously varying flexural stiffness can be inferred. 

Let us consider a non uniform Euler-Bernoulli beam, with variable flexural stiffness 
( ) ( )E x I x , governed by Eq. (2). An approximate expression of the flexural stiffness ( ) ( )E x I x  

can be given by the piecewise model in Eq. (3) such that at the abscissas ,ix xγ=  the exact and 

approximate flexural stiffness assume the same value , ,( ) ( )i iE x I xγ γ . In view of the adopted 

flexural stiffness model, the following positions can be accounted for: 

, ,ix i xγ = ∆  

0 0 , ,(0) (0) , ( ) ( ) ,i i i iE I E I E x I x E Iγ γ= =  

1 1

0 0

.i i i i
i

E I E I

E I
γ − − −=  

(4) 

The limit of Eq. (3) for n → ∞  can be written as follows: 

[ ] ( )

[ ] ( )

1 1
0 0 ,

1

0

lim ( ) ( ) lim

(0) (0) ( ) ( ) ( ) ( )

n
i i i i

ipwn n
i

l

E I E I
E x I x E I U x x x

x

E I E I U x d E x I x

γ

ξ ξ ξ ξ

− −

→∞ →∞ =

−= − − ∆ =
∆

= + − =

∑

∫
I

 (5) 

where Eqs. (4a-c) have been accounted for. According to Eq. (5), the flexural stiffness 
( ) ( )E x I x  is recovered as the limit of the piecewise model for n → ∞  hence for 0x∆ → .  
In view of the property obtained in Eq. (5) the explicit solution of the Euler-Bernoulli beam 

with the approximate model given by Eq. (3) can lead to the solution of the non uniform 
beam. 

For the adopted approximate expression of the flexural stiffness given by Eq. (3), the 
governing equation (2) assumes the following form: 

( )0 0 ,
1

1 ( ) ( )
n

i i pw
i

E I U x x u x q xγγ
=

  − − =  
  
∑

II

II  (6) 

where ( )pwu x  is the approximate deflection function of the beam. 

As recently shown in the literature10,the closed form solution of Euler-Bernoulli beams 
subjected to abrupt changes of the flexural stiffness are governed by Eq. (6) and the following 
closed form expression of the approximate deflection function can be obtained: 
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( ) ( )

( ) ( )
[ ] [ ] [ ] [ ] ( ) ( )

22
1 2 3 1 , ,

1

3 3 2 3
4 1 , , ,

1

4 4 34
, , ,

1 ,
10 0 0 0

( )

3 2

( ) ( ) ( )( )
.

n

pw i i i i i
i

n

i i i i i i
i

n
i i i

i i i i
i

u x c c x c x x x U x x

c x x x x x U x x

q x q x q x x xq x
U x x

E I E I

γ γ

γ γ γ

γ γ γ
γ

γ µ µ

γ µ µ

γ µ µ

+
=

+
=

+
=

 = + + + − − + 
 

 + + − + − + 
 

− − −
+ + −

∑

∑

∑

 (7) 

In Eq. (7) 1c , 2c , 3c , 4c  are integration constants, [ ]( )kq x  denotes a function evaluated as a 

primitive of order k of the external transversal load function ( )q x  and the following position 
have been accounted for: 

0 0
1

1 1

1

1
.

1
i i

i i
j

j

E I

E I
µ

γ
−

− −

=

= =
−∑

 
(8) 

According to Eq. (5) the non uniform flexural stiffness has been obtained as the limit of a 
discontinuous model, hence, in view of the linearity of the problem, the deflection function 

( )u x  of the non-uniform beam with flexural stiffness ( ) ( )E x I x  can be obtained from the 

approximate deflection function ( )pwu x  by taking the limit for n → ∞  of Eq. (7) as follows: 

( )( ) ( ) ( )

( )( ) ( ) ( )
[ ]

22 1 1
1 2 3 0 0 , ,

1 1 1

3 3 2 31 1
4 0 0 , , ,

1 1 1

4
1 1

0 0

( ) lim ( ) lim

lim 3 2

( )
lim

n
i i i i

pw i i
n n

i i i i i

n
i i i i

i i i
n

i i i i i

i i i

n

E I E I
u x u x c c x c x E I x x U x x

E I E I

E I E I
c x E I x x x x U x x

E I E I

E I Eq x

E I

γ γ

γ γ γ

− −

→∞ →∞ = − −

− −

→∞ = − −

− −

→∞

 −= = + + + − − + 
  

 −+ + − + − + 
  

−+ +

∑

∑

( )( )
[ ] [ ] [ ] ( ) ( )4 4 3

, , , ,
1 1 1

( ) ( ) ( )
n

i
i i i i

i i i i i

I
q x q x q x x x U x x

E I E I γ γ γ γ
= − −

 − − − − ∑

(9) 

where the positions given by Eqs. (4) and (8) have been accounted for. 
By solving the limits appearing in Eq. (9) the following closed form of the deflection 

function of the non-uniform Euler-Bernoulli beam is obtained: 

[ ]
( )

( ) ( )

[ ]
( )

( ) ( )

[ ] [ ]
( )

[ ] [ ] [ ] ( )( ) ( )

22
1 2 3 2

0

3 3 2 3
4 2

0

4
4 4 3

2
0

( ) ( )
( ) (0) (0)

( ) ( )

( ) ( )
(0) (0) 3 2

( ) ( )

( ) ( )( )
( ) ( ) ( ) .

(0) (0) ( ) ( )

l

l

l

E I
u x c c x c x E I x U x d

E I

E I
c x E I x x U x d

E I

E Iq x
q x q q x U x d

E I E I

ξ ξ
ξ ξ ξ

ξ ξ

ξ ξ
ξ ξ ξ ξ

ξ ξ

ξ ξ
ξ ξ ξ ξ ξ

ξ ξ

 
 = + + − − − +
 
 

 
 + − − + − +
 
 

+ − − − − −

∫

∫

∫

I

I

I

(10) 

Eq. (10) can be further simplified, by means of integration by parts, as follows: 
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( )

[ ] [ ]
[ ]

1 2 3 4

0 0

4 3
2

0

( ) 2 (0) (0) 6 (0) (0)
( ) ( ) ( ) ( )

(0) (0)
( ) .

(0) (0) ( ) ( )

x x

x

xx
u x c c x c E I d c E I d

E I E I

q q x x
q d

E I E I

ξ ξξ ξ ξ
ξ ξ ξ ξ

ξ ξ ξ
ξ ξ

−−= + + + +

+ −+ +

∫ ∫

∫

 (11) 

Subsequent differentiations of the deflection function given by Eq. (11) provide the 
following closed form expression for the slope and curvature functions of the non-uniform 
beam, respectively: 

[ ] [ ]

2 3 4

0 0

3 2

0

1
( ) ( ) 2 (0) (0) 6 (0) (0)

( ) ( ) ( ) ( )

(0) ( )
,

(0) (0) ( ) ( )

x x

x

x u x c c E I d c E I d
E I E I

q q
d

E I E I

ξϕ ξ ξ
ξ ξ ξ ξ

ξ ξ
ξ ξ

= − = − − − −

− −

∫ ∫

∫

I

 

[ ]2

3 4

( ) (0) (0)
( ) ( ) 2 6 .

(0) (0) ( ) ( )

q x E I
x u x c c x

E I E x I x
χ

 
= − = − + +  

 

II  

(12) 

It has to be noted that Eqs. (12), representing the slope and curvature of the non-uniform 
beam can also be recovered by taking the limit for n → ∞  of the corresponding approximate 
functions obtained by differentiating the approximate deflection function given by Eq. (7). 
The bending moment function is obtained by multiplying the curvature function given by Eq. 
(12 b) by the continuously variable flexural stiffness ( ) ( )E x I x  as follows: 

[ ]2

3 4

( )
( ) ( ) ( ) ( ) (0) (0) 2 6 .

(0) (0)

q x
M x E x I x x E I c c x

E I
χ

 
= = − + +  

 
 (13) 

Finally, the shear force function is obtained by means of differentiation of Eq. (13) as follows: 

[ ]1

4

( )
( ) ( ) (0) (0) 6 .

(0) (0)

q x
V x M x E I c

E I

 
= = − +  

 

I  (14) 

It has to be remarked that, since the solution of non-uniform beams presented in this section 
has been obtained as the limit of a beam with discontinuous flexural stiffness, Eq. (11) holds 
also for non-uniform beams where the flexural stiffness is non-differentiable due to the 
presence of flexural stiffness discontinuities, such as abrupt changes of the material or the 
cross-section. 

4 THE NON-UNIFORM EULER-BERNOULLI BEAM IN PRESENCE OF SLOPE 
DISCONTINUITIES 

The piecewise flexural stiffness model adopted in Eq. (3) has been shown in the previous 
section to be useful in order to obtain the explicit solution of non-uniform beams. In this 
section the piecewise model introduced in Eq.(3) in enriched by means of additional 
distributions such as Dirac’s deltas able to represent discontinuities in the slope function and 
it will be shown how the explicit expressions of the response functions of non-uniform beams 
in presence of slope discontinuities are obtained.  

The piecewise flexural stiffness model adopted in Eq. (3) to describe abrupt changes of the 
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flexural stiffness can be enriched by means of the superposition of Dirac’s delta distributions 
centred at abscissae , jxβ , 1, ,j m= K , such that , ,j ix xβ γ≠ ,  i, j∀ , as follows: 

[ ] ( ) ( )0 0 , ,
1 1

( ) ( ) 1 .
n m

i i j jpw
i j

E x I x E I U x x x xγ βγ β δ
= =

 
= − − − − 

 
∑ ∑  (15) 

The introduction of Dirac’s deltas into a uniform flexural stiffness model has been recently 
shown to be equivalent to the presence of internal hinges endowed with rotational springs 
hence leading to discontinuities in the slope function9.  

In this case, the governing equation of a non uniform Euler-Bernoulli beam, with variable 
flexural stiffness ( ) ( )E x I x  in presence of concentrated slope discontinuities can be 
approximated as follows: 

( ) ( )0 0 , ,
1 1

1 ( ) ( ) .
n m

i i j j pw
i j

E I U x x x x u x q xγ βγ β δ
= =

  
− − − − =  

   
∑ ∑

II

II  (16) 

The explicit solution of the governing equation (16) has been obtained in a recent work by 
employing distribution integration rules involving the product of Diracs’ deltas10 and takes the 
following form:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
[ ] [ ] [ ] [ ] ( ) ( )

22
1 2 3 , , , ,

1 1

3 3 2 3
4 , , , , , ,

1 1

4 4 34
, , ,

,
10 0 0 0

( ) 2

3 2 6

( ) ( ) ( )( )

n m

pw i i i j j j
i j

n m

i i i i j j j j
i j

n
i i i

i i
i

u x c c x c x x x U x x l x x U x x

c x x x x x U x x l x x x U x x

q x q x q x x xq x
U x x

E I E I

γ γ β β

γ γ γ β β β

γ γ γ
γ

γ β

γ β

γ

= =

= =

=

 
= + + + − − + − − + 

 

 
+ + − + − + − − + 

 

− − −
+ + − +

∑ ∑

∑ ∑

∑
[ ] ( ) ( )
2

, ,

,
1 0 0

( )m
j j

j j
j

q x x x
l U x x

E I
β β

ββ
=

−
+ −∑

 (17) 

where: 

1 ,i i i iγ γ µ µ +=  (18) 

( ), ,
1

1
1 ,

1

n
j

j j i j i
ij

U x x
l A β γ

β
β η γ

β =

  = + + −   −   
∑  (19) 

( )( ) ( ), ,
1 1

,
1 1

n
i

j j j i
i i j i j

U x x
A A

β γ
γη β

µ β µ β= +

= −
− −∑  (20) 

and iµ  is given by Eq. (8).  

The constant A  appearing in Eqs.(19),(20) arises from the definition of the product of two 
Dirac’s delta distributions proposed by Bagarello11,12. Bagarello indicates that the product of 
two Dirac’s deltas both centred at x0 can be reduced to a single Dirac’s delta multiplied by a 
constant A . A set of values that can be adopted for the quantity A , is reported in  the 
Appendix of the paper10. 
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For the sake of completeness, the stiffnesses , jkϕ  of the rotational springs  equivalent to the 

Dirac’s deltas are here reported as follows: , 0 0 /( )j jk E I lϕ β= .  

Furthemore, besides the relationships introduced in Eqs. (4) still holding, the following 
relationships between iγ , jβ , jη  and the values of the continuous flexural stiffness function 

( ) ( )E x I x  hold: 

( )( )
1 1

0 0
1 1

,i i i i
i

i i i i

E I E I
E I

E I E I
γ − −

− −

−=  (21) 

( )( ) ( )1 1
0 0 ,

1 1 1 0 0 0 0

,
n

i i i i
j j j

i i i j i i j

E I E I
E I U x i x

E I E I A E I E I A
βη β

β β
− −

= − −

−= − ∆
− −∑  (22) 

( )( ) ( )1 1
0 0 ,

1 1 1

1
1 .

1

n
j i i i i

j j j
ij i i i i

E I E I
E I U x i x

l A E I E I β
β

β η
β

− −

= − −

  −= + + − ∆    −   
∑  (23) 

The deflection function ( )u x  of the non-uniform beam with non-uniform flexural stiffness 
( ) ( )E x I x  in presence of internal hinges can be obtained from the approximate deflection 

function ( )pwu x , given by Eq. (17), by taking the limit for n → ∞ , as follows: 

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

1 2

22 (lim)1 1
3 0 0 , , , ,

1 11 1

3 3 2 31 1
4 0 0 , , ,

1 1 1

(li

( )

lim 2

lim 3 2

6

n m
i i i i

i i j j j
n

i ji i i i

n
i i i i

i i i
n

i i i i i

j

u x c c x

E I E I
c x E I x x U x x x l x x U x x

E I E I x

E I E I
c x E I x x x x U x x x

E I E I x

l

γ γ β β

γ γ γ

β

β

− −

→∞ = =− −

− −

→∞ = − −

= + +

 −+ + − − ∆ + − − + ∆  

 −+ + − + − ∆ + ∆

+

∑ ∑

∑

( ) ( )
[ ]

( )( )

[ ] [ ] [ ] ( ) ( )
[ ] ( ) ( )

m)
, , ,

1

4 4 34
, , ,1 1

0 0 ,
10 0 1 1 0 0

2
, ,(lim)

,
1 0 0

( ) ( ) ( )( )
lim
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q x x x
l U x x

E I

β β β
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β β
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=
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(24) 

where: 
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1 1
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1 1 1

1
lim

1

1 lim .
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 −
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 − − − ∆ 

 −⋅ + − ∆ ∆  ∆ 

∑

∑

 (25) 

where the positions given by Eqs. (4), (8), (21)-(23) have been accounted for. 
By solving the limits appearing in Eqs. (24) and (25) the following closed form of the 

deflection function of the non-uniform Euler-Bernoulli beam is obtained: 
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where: 
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 
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 − − 

 
 ⋅ − −
 
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∫

∫

I

I
 (27) 

Eq. (26) can be further simplified, by means of integration by parts, as follows: 
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( ) ( ) ( )
[ ] [ ]

[ ]
[ ]

1 2

(lim)
3 , ,

10

(lim)
4 , , ,

10

24 3
,2 (lim)

0

( )

2 (0) (0)
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where: 
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, , , ,

(0) (0)1 (0) (0)

( ) ( ) ( ) ( ) (0) (0)
j

j
j j j j j

E IE I

l E x I x E x I x E I Aβ β β β

β
β

β
=

−
 (29) 

Subsequent differentiations of the deflection function given by Eq. (28) provide the 
following closed form expression for the slope and curvature functions of the non-uniform 
beam with slope discontinuities, respectively: 
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 (30a) 
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3 4 ,
1
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( ) ( ) 2 6 .
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m

j j
j

q x E I
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  
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∑II (30b) 

The bending moment function is obtained by multiplying the curvature function given by 
Eq. (30 b) by the continuously variable flexural stiffness ( ) ( )E x I x  in presence of 
singularities, and the shear force function is obtained by means of differentiation of the 
bending moment function. For the bending moment and the shear force functions the same 
expressions provided by Eqs. (13) and (14) concerning the case of beam without singularities 
are obtained. In fact, for statically determinate beams the bending moment and the shear force 
should not depend on the adopted flexural stiffness. On the contrary, for statically determinate 
beams, the adopted flexural stiffness model with Dirac’s delta singularities will affect the 
expressions of the constants 3 4,c c  appearing in Eqs. (13), (14). 

5 PARTICULAR CLOSED FORM SOLUTIONS 

In this section the closed form solutions presented in the previous sections for non-uniform 
beams in presence of flexural stiffness and slope discontinuities are particularized for 
different variation laws of the flexural stiffness in order to show how any case can be easily 
treated without difficulties concerning with the integration procedure. 

For the case of parabolic variable distributed load the following primitive functions of the 
external load are considered: 

( )
[ ] ( ) [ ] ( )
[ ] ( ) [ ] ( )

2
0 1 2

1 22 3 2 3 40 0
1 2 1 2

3 43 4 5 4 5 60 0
1 2 1 2

( ) 1

( ) 6 3 2 , ( ) 6 2
6 12

( ) 20 5 2 , ( ) 15 3
120 360

q x q x x

q q
q x x x x q x x x x

q q
q x x x x q x x x x

α α

α α α α

α α α α

= + +

= + + = + +

= + + = + +

 (31) 

where l denote the beam length. The load parameters 0q , 1α  and 2α  appearing in Eqs. (31) 

can also be chosen to obtain a uniformly distributed load ( 0 0q ≠ , 1 2 0α α= = ) and a linearly 

distributed load (0 0q ≠ , 1 0α ≠ , 2 0α = ).  

For the case of pn  point loads kP  concentrated at abscissae kx , 1, . pk n= K , the following 

primitive functions of the external load are considered: 
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∑

∑ ∑

∑ ∑

 (32) 

For the case of Mn  concentrated moments sM  at abscissae sx , 1, . Ms n= K , the following 

primitive functions of the external load are considered: 

[ ]

[ ] [ ]
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1
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1 1

2
3 4

1 1
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( )
( ) ( ) ( ) , ( ) ( ) .

2

M

M M

M M

n

s s
s

n n

s s s s
s k

n n
s

s s s s s
s s

q x M x x
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∑
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∑ ∑

 (33) 

where [ ]1 ( )sx xδ −  indicates the generalized primitive function of the Dirac’s delta 

distribution, called doublet distribution, which is able to model concentrated moments.     

5.1 Parabolic flexural stiffness 

For a non-uniform beam whose flexural stiffness law is parabolic, the following model is 
assumed: 

( )2
0 0 1 2( ) ( ) 1E x I x E I k x k x= + +  (34) 

The flexural stiffness parameters 0 0E I , 1k  and 2k  appearing in Eqs. (34) can also be chosen 

to obtain a uniform beam (0 0 0E I ≠ , 1 2 0k k= = ) and a linear beam (0 0 0E I ≠ , 1 0k ≠ , 2 0k = ).  

In this case, if the uniform distributed load 0q  is considered, the governing differential 

equation can be obtained by Eq. (2) as follows: 

( ) ( )2 0
1 2 1 2 2

0 0

1 ( ) 2 2 ( ) 2 ( )
q

k x k x u x k k x u x k u x
E I

+ + + + + =IV III II  (35) 

The solution of the governing equation (35) is obtained by replacing Eq. (34) into Eq. (11), 
and after calculation of the integrals, as follows: 

( )

( ) ( )

( )( ) ( ) ( )

1 2 3 1 2

2
4 1 2 1 2 1 2

2

20
1 2 1 2 1 2 1 2 1 22

2 0 0

( ) 2 2 ( ) ( )

1
6 ( ) 2 ( )

2 ( ) ( ) 4 ( ) 2
4

u x c c x c k k x F x G x

c k k x G x k k x k k F x x
k

q
k k x k k k F x G x k k k x F x k k x x

k E I

= + + + − +  

 + + − + − − + 

 + + − − − + + + 

(36) 

In Eq. (36) the following functions have been defined: 
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2 41
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( )2
1 2

2

1
( ) ln 1

2
G x k x k x

k
= + +  

(37) 

Successive differentiations of Eq. (36) leads to: 

( )

( )
2 3 2 4 1

20
1 2 1

2 0 0

( ) ( ) 4 ( ) 6 ( ) ( )

2 ( ) ( )
2

x u x c c k F x c k F x G x
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I

 

2
0

0 0 3 4
0 0

( ) ( ) ( ) ( ) 2 6
2

q x
M x E x I x u x E I c c x

E I

 
= − = − + + 

 

II  

0
0 0 4

0 0

( ) ( ) 6
q x

V x M x E I c
E I

 
= = − + 

 

I  

(38) 

By substituting Eqs. (38) into Eq. (35), the governing differential equation is identically 
satisfied.  

5.2 Hyperbolic flexural stiffness 

For a non-uniform beam, whose flexural stiffness is variable with an hyperbolic law, the 
following model is assumed: 

0 0( ) ( )
1

E I
E x I x

kx
=

+
 (39) 

In this case, if a uniformly distributed load ( ) aq x q=  is considered, the governing 

differential equation can be obtained by Eq. (2) as follows: 

( ) ( )
( )

2
20

1 22 3
0 0

1 2 2
( ) ( ) ( ) 1

1 1 1

k k q
u x u x u x x x

kx E Ikx kx
α α− + = + +

+ + +
IV III II  (40) 

The solution of the governing equation (40) is obtained by replacing Eqs. (31) and (39) into 
Eq. (11), and after calculation of the integrals, as follows: 

2 3
1 2 3 4

3 2 40 2 1 2 1

0 0

( ) 1 1
3 2

2 3
1

24 21 15 5

k k
u x c c x c x x c x x

q k k k
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α α α α

   = + + + + + +   
   

+ + + + + + 
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 (41) 

Successive differentiations of Eq. (41) leads to: 

( ) ( )
( ) ( )

2
2 3 4

1 23 2 30 2
1

0 0

( ) ( ) 2 2 3

2 2
3 4

24 3 5

x u x c c kx x c kx x
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x x k x x

E I
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α αα α
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 

I

 (42) 
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0 0
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q
M x E x I x u x E I c c x x x x

E I
α α

 
= − = − + + + + 

 

II  

By substituting Eqs. (42) into Eq. (40), the governing differential equation is identically 
satisfied. 

 

6 NUMERICAL APPLICATION TO A NON-UNIFORM BEAM WITH 
SINGULARITIES 

The closed form solution presented in this work under the form reported in Eq.(28) allows 
to treat straightforwardly any non-uniform beam in presence of abrupt changes of the flexural 
stiffness and also singularities causing slope discontinuities, provided that the four integration 
constants are evaluated by means of the boundary conditions at both ends of the beam. 

As a matter of example, the clamped-clamped non-uniform beam with singularities, and 
subjected to a transversal load 0( ) 40 /q x q kN m= = , uniformly distributed along the entire 

span of lenght 5l m= , has been analysed according to the following flexural stiffness:      

( ) ( ) ( )
2

2
0 0 1 2 ,

1

( ) ( ) 1 1 j j
j

E x I x E I k x k x U x x x xγ βγ β δ
=

 
= + + − − − − 

 
∑  (43) 

In particular, the beam under study presents a parabolic flexural stiffness with the following 
values for the parameters appearing in Eq.(43): 8 2

0 2.06 10 /E kN m= ⋅ , 3 4
0 8.57 10I m−= ⋅ , 

1
1 0.4k m−= − , 2

2 0.1k m−= . Moreover, the beam is subjected to an abrupt change of the 

flexural stiffness at 2.3x mγ =  whose intensity is defined by 0.7γ = , and to two internal 

hinges at ,1 ,21.8 , 4.5x m x mβ β= =  endowed with rotational springs whose stiffnesses are 

defined by the parameters 1 20.18 , 0.11m mβ β= = , respectively. For the quantity A  the first 
value, 2.013A =  evaluated in10, among those proposed in11 has been chosen. The adopted 
flexural stiffness variation is reported in Fig.2.  
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Figure 2: The adopted flexural stiffness variation 

 
The closed form soution for the beam under study, in terms of transversal displacement, is 

directly inferred by Eq.(28) as follows:  
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E I

β β
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 (44) 

where ( ), ( )F x G x  are given by Eqs.(37a), (37b), respectively, and (lim)
jβ is given by Eq.(29). 

The integration constants 1 2 3 4, , ,c c c c  appearing in Eq.(44) have been determined by 

imposing the following boundary conditions:   

(0) 0 , (0) 0 , ( ) 0 , ( ) 0u u u l u l′ ′= = = =  (45) 

and the results, in terms of transversal displacement, rotation, curvature, bending moment and 
shear force have been plotted in Figs.3-7, respectively, and compared to those regarding a 
uniform beam with constant flexural stiffness 0 0E I  and a non-uniform beam with parabolic 

flexural stiffness ( )2
0 0 1 2( ) ( ) 1E x I x E I k x k x= + +  in absence of singularity of any kind.  
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Figure 3: Transversal displacements 
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Figure 4: Rotation function  
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Figure 5: Curvature function 
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Figure 6: Bending moment 
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Figure 7: Shear force 
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7 NON-UNIFORM BEAMS DUE TO THE PRESENCE OF DAMAGE 

Variations of geometrical and structural parameters along the beam span are often caused by 
the presence of both concentrated and diffused damage. In particular, the presence of 
concentrated cracks along the beam span can be shown to lead to a stiffness reduction in a 
beam segment of finite width, whose extension and intensity can be obtained by means of the 
theory of fracture mechanics or from a definition of the “ineffective area” so as to define a 
distributed damage model13-18. The models for the concentrated cracks, as long as damage 
evolution is not accounted for, can hence be treated within the context of the theory of beams 
with non-uniform geometrical and physical parameters. The theory and the exact closed form 
solutions presented in this work can hence be adopted to analyse some of the different damage 
models available in the literature.  

The effect of a single crack of depth cd , concentrated at the abscissa cx  of the beam, can be 

represented by a variable flexural stiffness ( ) ( )E x I x  as follows: 

0 0( ) ( ) ( )E x I x E I g x=  (46) 

where the ( )g x  function is able to describe the flexural stiffness decrement in the vicinity of 
the crack. In this context, the influence of a crack on a rectangular cross-section of height d , 
by neglecting the change of the neutral axis in the vicinity of the crack, will be considered. In 
particular, the ratio of the flexural stiffness value c cE I  at the cracked cross-section to the 

undamaged value 0 0E I  will be denoted as 3 3( ) /c cg d d d= − . Furthermore, cL  denotes the so-

called “effective length” accounting for the influence of the cracked cross-section on the 
flexural stiffness of the beam. 

The damage models provided in the literature differ from one another for the expression of 
the ( )g x  function and for the amplitude of the effective length cL . 

Cerri and Vestroni13,14 proposed a uniform variation of the flexural stiffness provided as 
follows:  

1   for  

( )   for  

1   for  

c c

c c c c c

c c

x x L

g x g x L x x L

x x L

≤ −
= − < < +
 ≥ +

 (47) 

where the effective length has been considered independent of the crack depth and assumed as 
1.5cL d= . 

Sinha et al. 17 proposed a linear variation of the flexural stiffness provided as follows:  

( )

1
  for  

( ) 1   for  

  for  
1

c c
c

c c c c c c
c

c c

x x L
x x

g x g g x L x x L
L

x x L


≤ − −= + − ⋅ − < < +

 ≥ +


 (48) 

where the effective length is evaluated as follows: 
1

ln

−
⋅=

c

c
c g

gd
L

α
 with 0.667α = . 
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Bilello18, on the basis of photoelastic analysis, confirmed by numerical finite element 
analysis, considered a triangular shaped “ineffective area” in the vicinity of the crack, 
subjected to very low stress, leading to a cubic variation of the flexural stiffness provided as 
follows:  

( )
3

3 3

1
  for  

( ) 1   for  

  for  
1

c c
c

c c c c c c
c

c c

x x L
x x

g x g g x L x x L
L

x x L


 ≤ −
 −= + − ⋅ − < < + 
  ≥ +



 (49) 

where the effective length is given as 
0.9

c
c

d
L = . 

An exponential variation of the flexural stiffness due to the presence of a crack has been 
proposed by Christides and Barr15 and Shen and Pierre16 as follows: 

( )
( )

1 exp 2

c

c
c c

g
g x

x x
g g

d
α

=
 −

+ − ⋅ − 
 

 
(50) 

where no effective length has been introduced and the value of the parameter α , ruling the 
exponential law, has been obtained by experimental investigation as 0.667α =  by Christides 
and Barr15 and 1.936α =  by Shen and Pierre16. 

The damage models reported in this section can be treated in the context of the non-uniform 
beam analysis. The solution proposed in this work for non-uniform beams can hence be 
adopted in order to provide a comparison regarding the different damage models in terms of 
resulting transversal displacements. 

A simply supported beam with length 1800L mm=  and rectangular cross-section (width 

50b mm=  height 25d mm= ) in presence of a single crack concentrated at 1200cx mm=  

with two different values of crack depth 6.25 ,12.5cd mm mm=  has been considered. In Fig.8 

the different damage models reported in this section have been adopted to treat the case of 
crack depth 6.25cd mm=  correspondent to 25 % damage percentage. In particular in Fig.8a 

the different flexural stiffness distributions have been depicted; in Fig.8b the relevant 
transversal displacement, normalised with respect to the maximum displacement 0u  of the 

undamaged beam, showing small differences, have been plotted.   
In Fig.9 the results concerning the case of crack depth 12.5cd mm=  correspondent to 50 % 

damage percentage are reported. In particular in Fig.9a and 9b the different flexural stiffness 
distributions and the relevant transversal displacement, normalised with respect to the 
maximum displament 0u  of the undamaged beam, respectively, have been plotted. According 

to Figs.8b and 9b, the results provided by the different damage models show differences 
increasing with the damage intensity.    

8 CONCLUSIONS 

The problem of integration of the static governing equations of non-uniform Euler-Bernoulli 
beams  has been treated in this study. The general explicit solution, requiring the evaluation of 
four integration constants dependent on the boundary conditions, has been presented. The 
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solution has been obtained as the limit of the case of multi-stepped beams, as a consequence 
the solution has been extended to non-uniform beam in presence of abrupt changes of the 
flexural stiffness. Furthermore, singularities due to the presence of Dirac’s delta distributions 
has been also introduced in the model to treat those cases in which internal hinges with 
rotational springs are present along the beam span. In any case, the proposed integration 
procedure leads to general closed form solutions without enforcement of any continuity 
condition along the beam span and only four integration constants are to be determined.  
The presented closed form solutions are adopted to provide explicit expressions for different 
non-uniform beams with different external load functions. A numerical application to show 
the efficiency of the proposed solutions to a non-uniform beam with a non-differentiable 
flexural stiffness due to the presence of different singularities has been presented. Finally, the 
case of a damaged beam subjected to concentrated damages has been treated within the 
context of non-uniform beam analysis. In fact, according to the damage models available in 
the literature, the effect of concentrated cracks can be treated as a non-uniform flexural 
stiffness distribution.    
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Figure 8: Beam with a concentrated crack correspondent to 25 % damage percentage: a) flexural stiffness 

distribution; b) transversal displacements 
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Figure 9: Beam with a concentrated crack correspondent to 50 % damage percentage: a) flexural stiffness 

distribution; b) transversal displacements 
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