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Abstract. In order to handle uncertainties, which unavoidably affect structural analysis, 
traditionally the probability theory has been an essential cornerstone. Nevertheless, recently 
criticism has arisen towards the effectiveness of building a Probability Density Function to 
characterize the uncertain properties when experimental data are not sufficient to justify it. In 
this context, the interval model has proved to be a useful tool to face the lack of knowledge 
characterizing early stages of the design process. The aim of this paper is to compare 
structural responses obtained by applying the interval and stochastic approaches to 
incorporate uncertainties into finite element analysis.  

1 INTRODUCTION 

In engineering practice, it is customary to employ deterministic values for the design 
parameters, relying on the concept of “safety factors” to take into account the sources of 
uncertainty which may affect all the stages of the design process. The main drawback arising 
from this modus operandi is that the choice of conservative values for those safety factors, 
although essential, may lead to an overestimation of the dimensions of the structural 
components. Over the last decades, huge efforts have been devoted to incorporate 
uncertainties within numerical analyses as actual design parameters, in order to obtain more 
realistic models of physical phenomena.  

Traditionally, uncertainties have been modeled in the context of the classical probability 
theory as random variables or random fields. Nevertheless, sometimes the inadequacy of 
experimental data to define the Probability Density Function (PDF) of the uncertain properties 
does not justify the use of the probabilistic model, as it often occurs in early stages of the 
design process. For this reason, recently a growing interest has arisen towards alternative 
approaches based on non-probabilistic concepts. In this context, the interval model, originally 
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developed from the Classical Interval Analysis (CIA)1, has gained popularity because it only 
requires the knowledge of the range of variability of the uncertain parameters, which are 
indeed modeled as interval variables with given lower bound (LB) and upper bound (UB). 

Over the last decades, researchers’ efforts have been devoted to incorporate uncertainties 
into the Finite Element Method, which nowadays represents the most efficient tool to analyze 
complex engineering systems. As a result, several Interval Finite Element Methods (IFEMs)2 
and Stochastic Finite Element Methods (SFEMs)3 have been developed. In particular, within 
the interval framework, a new IFEM4 based on the improved interval analysis via extra 
unitary interval (IIA via EUI)5 has been recently introduced by the authors. This method 
enables to overcome the main drawbacks that hinder the use of IFEMs in engineering 
applications, such as for instance their inability to handle relatively high degrees of 
uncertainty, or to find accurate estimates of stress bounds. 

In this paper, the IFEM based on the IIA is exploited to perform appropriate comparisons 
with the results provided by the traditional probabilistic model in the context of finite element 
analysis. To this aim, the uncertain properties are consistently modeled as random variables 
uniformly distributed within the range of the corresponding interval variables. Approximate 
closed-form expressions of the mean-value and variance of the stochastic response are derived 
by applying the so-called Rational Series Expansion (RSE)6, recently introduced to 
approximate the explicit inverse of a matrix with small rank-r modifications. 

A numerical application concerning a square plate under uniform traction with uncertain 
Young’s modulus is presented to compare the structural responses pertaining to the interval 
and stochastic models of uncertainties. 

2 FINITE ELEMENT FORMULATION FOR STRUCTURES WITH UN CERTAIN 
PROPERTIES 

Let us consider a continuous body made of linear-elastic isotropic material which occupies 
the volume V  bounded by the surface S  in its undeformed state. The body is subjected to 
volume forces ( )b x  in V  and surface forces ( )t x  on the portion tS  of the boundary surface 

S , with T
1 2 3[ ]x x x=x  denoting the position vector of a generic point referred to a 

Cartesian coordinate system 1 2 3( , , )O x x x ; the displacements ( )u xɶ  are imposed on the 

constrained portion uS  of S , such that t uS S S= ∪ . Applied loads are assumed to be 

deterministic and to act in a quasi-static manner. Let the volume of the body be subdivided 
into Ne Finite Elements (FEs). Without loss of generality, only Young’s modulus of the 
material is treated as an uncertain parameter, while all other input parameters are supposed to 
be deterministic. In particular, the present formulation relies on the assumption of 
independent uncertain Young’s moduli of the FEs, defined as follows: 

( )( ) ( )
0( ) 1 ,          ( 1,2, , )i i

i i eE E i Nα α= + = …          (1) 

where 1iα <  is the dimensionless fluctuation around the nominal value ( )
0

iE . At this stage, no 

assumptions are introduced on the uncertainty model assumed for the fluctuations iα .  

Relying on Eq.(1), the elastic matrix of the i -th FE reads as: 

( )( ) ( )
0( ) 1i i

i iα α= +E E           (2) 
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where ( )
0
iE  is the nominal value. Following the standard displacement-based FE formulation, 

the displacement field, ( ) ( ; )i αu x , the strain field, ( ) ( ; )iε αx  and the stress field, ( )( ; )iσ αx , 
within the i -th FE are expressed as interpolation of the nodal displacements collected into the 
vector ( ) ( )i αd , i.e.: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ; ) ( ) ( );     

( ; ) ( ) ( );    

( ; ) ( ) ( ) ( )

i i i

i i i

i i i i
iα

=
=
=

u x N x d

x B x d

x E B x d

α α
ε α α
σ α α

 (3a-c) 

where α  is the vector collecting the dimensionless fluctuations of Young’s moduli iα  

( 1,2, , )ei N= … . In the previous equations, ( ) ( )iN x  is the shape-function matrix and ( ) ( )iB x  

is the strain-displacement matrix.  
The stiffness matrix of the i-th FE is formally analogous to the one pertaining to the 

deterministic FE and it can be expressed as the result of a fluctuation around the nominal 

stiffness matrix ( ) ( )
0 ( )i i

iα
=

=
α 0

k k , as follows: 

( )
( )

( ) ( )T ( ) ( ) ( ) ( )
0( ) ( ) ( ) ( )d 1 .

i

i i i i i i
i i i

V

Vα α α= = +∫k B x E B x k    (4) 

Furthermore, the hypothesis of deterministic applied loads entails that uncertainties do not 
affect the element force vector, i.e.: 

( ) ( )

( ) ( )T ( ) ( )T ( )( ) ( )d ( ) ( )d .
i i

t

i i i i i

V S

V S= +∫ ∫f N x b x N x t x          (5) 

By performing standard assembly procedure, the set of linear equilibrium equations is 
obtained: 

( ) ( ) .=K U Fα α          (6) 

In Eq. (6), ( )αU  is the n − vector of the unknown global displacements, n  being the 
number of degrees of freedom of the FE model, while 

( )T ( ) ( ) ( )T ( ) ( )
0 0

1 1

( ) ( )
e eN N

i i i i i i
i i

i i

α α
= =

= = +∑ ∑K L k L K L k Lα  (7) 

and 

( )T ( )

1

eN
i i

i=

=∑F L f   (8) 

are the global stiffness matrix and the nodal force vector, respectively, with ( )iL  denoting the 
connectivity matrix. Notice that the global stiffness matrix ( )αK , which depends on the 

fluctuations iα , can be expressed as the sum of the global nominal stiffness matrix 0K  plus a 

deviation given by the superposition of the contributions of each uncertain parameter. 

Whatever uncertainty model is adopted, the knowledge of the inverse of the global 
stiffness matrix as an explicit function of the uncertain parameters plays a crucial role in order 
to predict the variability of the response. In this context, recently the so-called Rational Series 
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Expansion (RSE)6 has been introduced to approximate the explicit inverse of a matrix with 
small rank-r modifications. The first step to apply the RSE is the decomposition of the 
stiffness matrix as sum of the nominal value plus a deviation given by a superposition of rank-
one matrices. For this purpose, the following decomposition is herein applied: 

    ( ) ( ) ( )T ( ) ( )T ( )
0

1 1

( ) ;    
e iN p

i
i i i i i i

i

λ α
= =

= + =∑∑K K v v v Lℓ ℓ ℓ ℓ ℓ

ℓ

α φ      (9a,b) 

where ( )
iλ ℓ  and ( )

i
ℓφ  denote the ℓ -th eigenvalue and the associated eigenvector of the 

nominal stiffness matrix ( )
0
ik  of the i -th FE. It is worth emphasizing that the number of non-

zero eigenvalues, ip n< , coincides with the number of deformation modes of the i-th FE. If 

the degree of uncertainty is small, namely 1iα << , only first-order terms of the RSE can be 

retained, yielding the following approximate explicit expression of the inverse of the stiffness 
matrix (RSE-1):  

( )
1 1

0 ( )
1 1

( )
1

e iN p
i i

i
i i i id

α λ
λ α

− −

= =

≈ −
+∑∑K K D

ℓ

ℓℓ

ℓ ℓ

α             (10) 

where 

( )T 1 ( ) 1 ( ) ( )T 1
0 0 0;     .i i i i i id − − −= v K v D = K v v Kℓ ℓ ℓ ℓ

ℓ ℓ
        (11a,b) 

Equation (10) holds if and only if ( ) <1i i idλ αℓ
ℓ

. 

3 UNCERTAIN PARAMETERS MODELED AS INTERVAL VARIABLE S 

The FE formulation presented in the previous section holds regardless of the model 
assumed to describe the uncertain parameters. The aim of the present study is to compare the 
stochastic and interval models of uncertainty by examining the associated structural 
responses.  

First, the uncertain parameters are modeled as independent interval variables in the context 
of the improved interval analysis via extra unitary interval (IIA via EUI)5, recently introduced 
in the literature to limit the conservatism due to the so-called dependency phenomenon1 which 
arises when the same interval variable occurs more than once in a mathematical expression. 
According to the IIA5, the fluctuation of Young’s modulus of the i-th FE can be modeled as a 
symmetric interval variable defined as: 

0, ˆ ˆI I I
i i i i i ie eα α α α= + ∆ = ∆            (12) 

where the apex I characterizes the interval variables; 0,iα  is the midpoint value (or mean) and 

iα∆  is the deviation amplitude (or radius), given by:  

0, 0;      0
2 2

i i i i
i i

α α α αα α+ −= = ∆ = >               (13a,b) 

with the symbols iα  and iα  denoting the lower bound (LB) and upper bound (UB) of the 

interval, respectively. Notice that the conditions 1iα∆ <  need to be satisfied in order to 

ensure positive values of Young’s moduli. Furthermore, in Eq.(12), ̂ [ 1,1]I
ie = −  is the so-
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called EUI which does not follow the rules of the Classical Interval Analysis (CIA). The 
subscript i  means that the EUI is associated to the i-th interval variable. In this way, the 
IFEM based on the IIA4 is able to take into account the dependencies between interval 
variables and thus to limit the overestimation of the response due to the dependency 
phenomenon. In the interval framework, the global equilibrium equations in Eq.(6) become 
interval equations, i.e.: 

.I I =K U F   (14) 

The solution set of these equations is typically described by a complicated region in the 
output space. For this reason, it is customary to seek, for each component of the interval 
displacement vector IU , the narrowest interval containing the set of all possible solutions. 
The interval extension of the RSE-1 (Eq.(10)), i.e. the IRSE-14, allows one to derive an 
approximate explicit expression of the interval displacement vector IU : 

( )
( )

1 1
0 ( )

1 1

ˆ

ˆ1

e iN p I
I I i i i

iI
i i i i i

e

d e

α λ
λ α

− −

= =

∆= = −
+ ∆∑∑U K F K F D F

ℓ

ℓℓ

ℓ ℓ

         (15) 

which yields the following closed-form formulas for the LB and UB  

          { } { }( ) mid ( );      ( ) mid ( )I I= − ∆ = + ∆U U U U U Uα α α α      (16a,b) 

where  

           { } 1
0 0,

1 1 1 1

mid ;      ( )
e i e iN p N p

I
i i i i

i i

a a−

= = = =

= + ∆ = ∆∑∑ ∑∑U K F D F U D F
ℓ ℓ ℓ ℓ

ℓ ℓ

α             (17a,b) 

where the symbol | |•  denotes absolute value component wise. In the previous equations, 0,ia
ℓ
 

and ia∆
ℓ
 are the midpoint and deviation amplitude of the generic series term in Eq.(15), 

respectively, i.e.: 

                                    ( )
( ) ( )

2( ) ( )

0, 2 2( ) ( )
;      .

1 1

i i i i i
i i

i i i i i i

d
a a

d d

λ α λ α
λ α λ α

∆ ∆= ∆ =
− ∆ − ∆

ℓ ℓ

ℓ

ℓ ℓ
ℓ ℓ

ℓ ℓ

            (18a,b) 

4 UNCERTAIN PARAMETERS MODELED AS RANDOM VARIABLES 

Within the stochastic framework, the fluctuations iα  of the uncertain Young’s moduli are 

modeled as independent zero-mean random variables. In order to carry out consistent 
comparisons with the interval model, such random variables are assumed to be uniformly 
distributed within the intervals [ , ]i iα α−∆ ∆ , iα∆  being the deviation amplitude of the 

corresponding interval variables ˆI I
i i ieα α= ∆ . Under this assumption, the equilibrium 

equations (6) have a random nature. The probabilistic characterization of the random 
displacement vector ( )U α  can be performed by applying classical Monte Carlo simulation 
(MCS) which requires heavy computations. Alternatively, by applying the RSE-1, an 
approximate explicit expression of the random displacement vector ( )U α  can be derived 

               
( )

1 1
0 ( )

1 1

( ) ( )
1

e iN p
i i

i
i i i id

α λ
λ α

− −

= =

= = −
+∑∑U K F K F D F

ℓ

ℓℓ

ℓ ℓ

α α              (19) 
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which yields the following closed-form formulas for the mean-value and covariance matrix of 
( )U α :  

( )

0
1 1

TT T T

1 1 1

E ( ) E ;

E ( ) ( ) E E E

e i

je i

N p

i i
i

pN p

i ik i ik i ik
i k

χ

χ χ χ χ

= =

= = =

= = −

= = −  

∑∑

∑∑∑

U

U U U

U U D F

U U D FF D

ℓ ℓ

ℓ

ℓ ℓ ℓ

ℓ

µ α

Σ α α −µ µ

(20a,b) 

where E i  denotes the stochastic average operator, while iχ
ℓ
 are random variables defined 

as: 

     
( )

( ) ,     ( , ).
1

j
i i

ij j
i ij i

j m
d

α λχ
λ α

= =
+

ℓ                  (21) 

It is worth remarking that Eqs.(20a,b) are much more advantageous than classical MCS 
since they just involve the evaluation of the statistics of the random variables iχ

ℓ
, without 

requiring the repeated inversion of the stochastic stiffness matrix ( )K α . 

5 NUMERICAL APPLICATION 

In order to investigate the influence of the uncertainty model on structural response, the 
square plate with uncertain Young’s modulus under uniform traction, shown in Figure 1, is 
analyzed. The plate is discretized into 16eN =  four-node quadrilateral FEs with 8 DOFs. The 

following data are assumed: width and thickness of the plate 0.1 mL =  and 0.001 mt = , 
respectively; nominal Young’s modulus 0 210 GPaE =  and Poisson ratio 0.3ν = ; traction 

10 MPap = . The fluctuations of the uncertain Young’s moduli of the FEs are modeled both 

as interval variables, ˆI I
i i ieα α= ∆ , iα α∆ = ∆  ( 1,2, , ei N= … ), and independent zero-mean 

random variables uniformly distributed within the interval [ ],α α−∆ ∆ .  

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

p

L

L

x

y

 

Figure 1: Square plate under uniform traction with uncertain Young’s modulus. 

First, the accuracy of the proposed closed-form expressions of response statistics (20a,b), 
obtained by applying the RSE-1, is scrutinized. Figure 2 displays the mean-value and variance 
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of the nodal displacements in the load direction jU  ( 1,2, ,20j = … ) of the plate with random 

Young’s moduli for 0.2α∆ = . The comparison with the results provided by MCS 
( 10000N =  samples) shows the accuracy of the proposed estimates of response statistics.  
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Figure 2: a) Mean-value and b) variance of the nodal displacements in the load direction of the plate with 
random Young’s moduli: comparison between the proposed estimates (Eqs. (20a,b)) and MCS data ( 0.2α∆ = ). 

Figure 3 displays the comparison between the region of the interval nodal displacements in 
the load direction of the plate provided by the IRSE-1 (Eqs. 16(a,b)), for 0.1α∆ =  and 

0.2α∆ = , and the confidence interval 3
j jU Uµ σ±  of the corresponding random displacements 

obtained by applying Eqs. (20a,b). It can be seen that the interval approach generally yields 
more conservative regions of the response quantities compared to those obtained within a 
probabilistic context.  

CONCLUSIONS 

The interval and stochastic approaches to handle uncertainties in structural problems have 
been compared in the context of FE analysis. To carry out consistent comparisons, within the 
stochastic framework, the uncertain properties have been modeled as independent random 
variables uniformly distributed over the range of the corresponding interval variables. By 
applying the so-called Rational Series Expansion, approximate explicit expressions of the 
bounds of the interval response and of the statistics of the random response have been 
derived. Numerical results, concerning a square plate with uncertain Young’s modulus, have 

)a

)b
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shown that the range of the interval response is generally more conservative than the 
confidence interval of the response given by the mean-value minus/plus three times the 
standard deviation. 
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Figure 3: Comparison between the regions of the nodal displacements in the load direction of the plate with 
uncertain Young’s moduli provided by the interval and stochastic approaches for a) 0.1α∆ =  and b) 0.2α∆ = . 
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