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Abstract. In order to handle uncertainties, which unavoidably affect structural analysis,
traditionally the probability theory has been an essential cornerstone. Nevertheless, recently
criticism has arisen towards the effectiveness of building a Probability Density Function to
characterize the uncertain properties when experimental data are not sufficient to justify it. In
this context, the interval model has proved to be a useful tool to face the lack of knowledge
characterizing early stages of the design process. The aim of this paper is to compare
structural responses obtained by applying the interval and stochastic approaches to
Incor porate uncertainties into finite element analysis.

1 INTRODUCTION

In engineering practice, it is customary to empbtsterministic values for the design
parameters, relying on the concept of “safety fiattdo take into account the sources of
uncertainty which may affect all the stages ofdlsign process. The main drawback arising
from this modus operandi is that the choice of conservative values for ¢heafety factors,
although essential, may lead to an overestimatibrthe dimensions of the structural
components. Over the last decades, huge efforte Haeen devoted to incorporate
uncertainties within numerical analyses as actealgh parameters, in order to obtain more
realistic models of physical phenomena.

Traditionally, uncertainties have been modeledhi& ¢tontext of the classical probability
theory as random variables or random fields. Néeéess, sometimes the inadequacy of
experimental data to define the Probability DenBityction (PDF) of the uncertain properties
does not justify the use of the probabilistic moas it often occurs in early stages of the
design process. For this reason, recently a growiteyest has arisen towards alternative
approaches based on non-probabilistic conceptbidrcontext, the interval model, originally
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developed from th€lassical Interval Analysis (CIA)Y, has gained popularity because it only
requires the knowledge of the range of variabibfythe uncertain parameters, which are
indeed modeled as interval variables with givendotound (LB) and upper bound (UB).

Over the last decades, researchers’ efforts hage evoted to incorporate uncertainties
into the Finite Element Method, which nowadays espnts the most efficient tool to analyze
complex engineering systems. As a result, sevatahial Finite Element Methods (IFEMs)
and Stochastic Finite Element Methods (SFEMs)ve been developed. In particular, within
the interval framework, a new IFEMbased on thémproved interval analysis via extra
unitary interval (1A via EUI)® has been recently introduced by the authors. Teshod
enables to overcome the main drawbacks that hitideruse of IFEMs in engineering
applications, such as for instance their inability handle relatively high degrees of
uncertainty, or to find accurate estimates of stiesunds.

In this paper, the IFEM based on thA is exploited to perform appropriate comparisons
with the results provided by the traditional proliabc model in the context of finite element
analysis. To this aim, the uncertain propertiescmesistently modeled as random variables
uniformly distributed within the range of the capending interval variables. Approximate
closed-form expressions of the mean-value and vegiaf the stochastic response are derived
by applying the so-calledRational Series Expansion (RSE)®, recently introduced to
approximate the explicit inverse of a matrix withal ranks modifications.

A numerical application concerning a square platden uniform traction with uncertain
Young's modulus is presented to compare the straictesponses pertaining to the interval
and stochastic models of uncertainties.

2 FINITE ELEMENT FORMULATION FOR STRUCTURES WITH UN CERTAIN
PROPERTIES

Let us consider a continuous body made of lineasti isotropic material which occupies
the volumeV bounded by the surfacB in its undeformed state. The body is subjected to
volume forcesb(x) in V and surface forcegx) on the portion§ of the boundary surface

S, with x=[x X, XJ' denoting the position vector of a generic poinfemed to a
Cartesian coordinate systef(x,X,,X;); the displacementdi(x) are imposed on the

constrained portionS, of S, such thatS=§ US,. Applied loads are assumed to be

deterministic and to act in a quasi-static manhet.the volume of the body be subdivided
into Ne Finite Elements (FEs). Without loss of generalitpmly Young’s modulus of the
material is treated as an uncertain parametergvatilother input parameters are supposed to
be deterministic. In particular, the present foration relies on the assumption of
independent uncertain Young’s moduli of the FE$inee as follows:

EVa)=EY (1+a ),  (=12.N, (1)
where a. <1 is the dimensionless fluctuation around the nomiatue E”. At this stage, no
assumptions are introduced on the uncertainty magiimed for the fluctuations .

Relying on Eq.(1), the elastic matrix of theh FE reads as:
EYa ) =(1+a;)EY 2)
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where E{’ is the nominal value. Following the standard dispment-based FE formulation,

the displacement fieldu® (x;a), the strain field,e”(x;a) and the stress fieldg” (x;a),
within thei -th FE are expressed as interpolation of the nddplacements collected into the
vectord®(a) , i.e.:

u(xa) =N )d”(a);
0" (x.0) =E"(a)B"” (x)d"”(a1)
where a is the vector collecting the dimensionless fluttus of Young’s modulia;

(i=1,2...,N,). In the previous equation®y"’(x) is the shape-function matrix arif" (x)
is the strain-displacement matrix.

The stiffness matrix of theth FE is formally analogous to the one pertainingthe
deterministic FE and it can be expressed as thdtres a fluctuation around the nominal

stiffness matrixk(’ =k © (a, )LZO, as follows:

kO(a;)= [ BOTGOE? (@ )BO ()dV® = (1+a; )k . (4)
v
Furthermore, the hypothesis of deterministic agpleads entails that uncertainties do not
affect the element force vector, i.e.:

0= [NOTEOb AV + [ NOT et )as®. (5)
v s

By performing standard assembly procedure, theotdinear equilibrium equations is
obtained:

K (a)U (a) =F. (6)

In Eq. (6), U(a) is the n—vector of the unknown global displacements,being the
number of degrees of freedom of the FE model, while

K(@)=YLO% O(a ). O K ,+3L K { Y @

and

Ne

F=L0%0 ®)

i=1
are the global stiffness matrix and the nodal foreetor, respectively, with® denoting the
connectivity matrix. Notice that the global stiffse matrix K (a), which depends on the
fluctuationsa,, can be expressed as the sum of the global nostiffaless matrixK , plus a
deviation given by the superposition of the conitikins of each uncertain parameter.
Whatever uncertainty model is adopted, the knowded§ the inverse of the global

stiffness matrix as an explicit function of the artain parameters plays a crucial role in order
to predict the variability of the response. In tbantext, recently the so-call&dtional Series
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Expansion (RSE)® has been introduced to approximate the explisieise of a matrix with
small rankr modifications. The first step to apply tiRSE is the decomposition of the
stiffness matrix as sum of the nominal value plaeaation given by a superposition of rank-
one matrices. For this purpose, the following degosition is herein applied:

N. p _
K (@) =K o+ > S AN A OTg ;v O =L 070 (9a,b)
i=1 (=1
where A and ¢” denote the/ -th eigenvalue and the associated eigenvector ®f th
nominal stiffness matrix{’ of thei-th FE. It is worth emphasizing that the numbenof-
zero eigenvaluesp <n, coincides with the number of deformation modeshefi-th FE. If
the degree of uncertainty is small, namejy<<1, only first-order terms of thRSE can be

retained, yielding the following approximate exjliexpression of the inverse of the stiffness
matrix (RSE-1):

} L A0
K L=k a / 10
@ ;/lem a " 4o
where
d, =vKV; D, =K VK (11ab)

Equation (10) holds if and only j#“a;d, |<1

3 UNCERTAIN PARAMETERS MODELED AS INTERVAL VARIABLE S

The FE formulation presented in the previous sactiolds regardless of the model
assumed to describe the uncertain parameters.iifthefdahe present study is to compare the
stochastic and interval models of uncertainty byanexing the associated structural
responses.

First, the uncertain parameters are modeled apamtient interval variables in the context
of theimproved interval analysis via extra unitary interval (I1A via EUI)®, recently introduced
in the literature to limit the conservatism duette so-callediependency phenomenon® which
arises when the same interval variable occurs ri@e once in a mathematical expression.
According to thdlA>, the fluctuation of Young’s modulus of tih FE can be modeled as a
symmetric interval variable defined as:

a' =a, +0ad =Dad (12)
where the apekcharacterizes the interval variableg;; is the midpoint value (or mean) and
Aa, is the deviation amplitude (or radius), given by:

q =%4*4a =0; Ag =295 (13a,b)
0, 2 : 2

with the symbols@ and @ denoting the lower bound (LB) and upper bound (WB}he
interval, respectively. Notlce that the conditioAsr, <1 need to be satisfied in order to
ensure positive values of Young’s moduli. Furthemredn Eq.(12),& =[-1,1] is the so-
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called EUI which does not follow the rules of ti@assical Interval Analysis (CIA). The
subscripti means that th&Ul is associated to thieth interval variable. In this way, the
IFEM based on thelA* is able to take into account the dependencies dsgtvinterval
variables and thus to limit the overestimation bé tresponse due to thdependency
phenomenon. In the interval framework, the global equilibrivegquations in Eq.(6) become
interval equations, i.e.:

K'U'=F. (14)
The solution set of these equations is typicallgcdbed by a complicated region in the

output space. For this reason, it is customaryegk sfor each component of the interval

displacement vectot', the narrowest interval containing the set ofpalésible solutions.
The interval extension of thBSE-1 (Eq.(10)), i.e. thdRSE-1*, allows one to derive an

approximate explicit expression of the intervalpthgement vectot)' :

_ _ Ne p Aa'\lj(/)
U' =(K')'F =K E - AN 15
(K1) F =K =33 300, aaa® F 49

which yields the following closed-form formulas fine LB and UB
U(a) =mid{U'} -AU(@); U @)= midu'}+au @) (16a,b)

where

Bi
ZAaMDi/F

(=1

N Ne
mid{U'} =K J'F +ZiawDMF ;@)=

i=1 (=1 i=1

(17a,b)

where the symbo] | denotes absolute value component wise. In theéqus\equationsa, ;,

and Aa, are the midpoint and deviation amplitude of th@ege series term in Eq.(15),
respectively, i.e.:
_ (Ai(()Aai)z d, ADNa,

_ . pa = Alba (18a,b)
1-(A"sad, ) A 1-(A“aad,)

Qi

4 UNCERTAIN PARAMETERS MODELED AS RANDOM VARIABLES

Within the stochastic framework, the fluctuatiosis of the uncertain Young’s moduli are

modeled as independent zero-mean random variablegrder to carry out consistent
comparisons with the interval model, such randomabes are assumed to be uniformly

distributed within the interval{-Aa;,,Aa;], Aa, being the deviation amplitude of the

corresponding interval variables?i' :Aa'ié'. Under this assumption, the equilibrium
equations (6) have a random nature. The probabilisharacterization of the random
displacement vectolJ(a) can be performed by applying classical Monte Canfoulation

(MCS which requires heavy computations. Alternativelyy applying the RSE-1, an
approximate explicit expression of the random @ispient vectot(a) can be derived

_ e Ne P aiAi((ﬂ)
U(@) =K (0)F =K F =3 >0 —D F (19)
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which yields the following closed-form formulas fibre mean-value and covariance matrix of
U(a):

My = E<U(G)> = Uo _Zj:i E<Xiz>DizF;

) (20a,b)

> STE ) - Elx,) En) P.FFD,

=1 (=1 k=1

T

%, = E(U(@)U" (@) ~1, (1)

where E<> denotes the stochastic average operator, whjleare random variables defined
as:

a A
XII —_— (|

—m, (j=¢,m). (21)

It is worth remarking that Egs.(20a,b) are much enadvantageous than classib4CS
since they just involve the evaluation of the stats of the random variableg, , without

requiring the repeated inversion of the stochasiitness matrixK (a) .

5 NUMERICAL APPLICATION

In order to investigate the influence of the unaiety model on structural response, the
square plate with uncertain Young’s modulus undefoun traction, shown in Figure 1, is

analyzed. The plate is discretized irf{ =16 four-node quadrilateral FEs with 8 DOFs. The
following data are assumed: width and thicknesshef plate L=0.1 m and t =0.001 m,
respectively; nominal Young's modulus, =210 GP¢ and Poisson ratiov =0.3; traction

p =10 MPa. The fluctuations of the uncertain Young's mocdhflithe FEs are modeled both
as interval variablesg' =Aa€', Aa, =Aa (i=1,2,..,N,), and independent zero-mean
random variables uniformly distributed within theerval [-Aa, Aa] .

y

p

16| 17 18| 19 2

11 12| 13 14 1

L

Figure 1: Square plate under uniform traction witizertain Young's modulus.

First, the accuracy of the proposed closed-fornresgions of response statistics (20a,b),
obtained by applying thRSE-1, is scrutinized. Figure 2 displays the mean-valug\ariance
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of the nodal displacements in the load directibn( j =1,2,...,20) of the plate with random

Young's moduli for Aa =0.2. The comparison with the results provided MCS
(N =1000C samples) shows the accuracy of the proposed d@ssméresponse statistics.
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Figure 2: a) Mean-value and b) variance of the hdid@lacements in the load direction of the platih
random Young's moduli: comparison between the psegdcestimates (Egs. (20a,b)) an@Sdata Qa =0.2).

Figure 3 displays the comparison between the regidhe interval nodal displacements in
the load direction of the plate provided by tHRSE-1 (Eqgs. 16(a,b)), forAa =0.1 and
Aa =0.2, and the confidence interv;a{Jj + 30'UJ_ of the corresponding random displacements

obtained by applying Egs. (20a,b). It can be séan the interval approach generally yields
more conservative regions of the response quantiiienpared to those obtained within a
probabilistic context.

CONCLUSIONS

The interval and stochastic approaches to handiertainties in structural problems have
been compared in the context of FE analysis. Toyaart consistent comparisons, within the
stochastic framework, the uncertain properties haeen modeled as independent random
variables uniformly distributed over the range bé tcorresponding interval variables. By

applying the so-calledrational Series Expansion, approximate explicit expressions of the

bounds of the interval response and of the stedistf the random response have been
derived. Numerical results, concerning a squarteplath uncertain Young’s modulus, have
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shown that the range of the interval response seigdly more conservative than the

confidence interval of the response given by themaelue minus/plus three times the
standard deviation.
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Figure 3: Comparison between the regions of thehdidplacements in the load direction of the plaité
uncertain Young’s moduli provided by the intervatlsstochastic approaches for&yr =0.1 and b)Aa =0.2.
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