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Abstract. Concepts of the multivariate extreme value theory (MEVT) are used to estimate the
dependence between structural demand parameters D and response spectrum S, (T) a
popular seismic intensity measure (IM). It is assumed that the seismic ground acceleration
A(t) is a Gaussian process with known probability law. Under this seismic hazard, the
random variablesD and S, (T) are weakly depend so that the usefulness of fragilities defined

asfunctions of S, (T) isquestionable.

1 INTRODUCTION

Fragilities, i.e., probabilities that structuraksms enter various damage states under seismic
hazards of specified intensities, are essentialstadf performance-based earthquake
engineering. Intensity measures, e.g., peak graweeleration, peak ground velocity, and
single/multiple ordinates of the pseudo-acceleratiesponse spectrL@(T) for selected

periodsT, are used to characterize the intensity of seigwénts. Fragilities are plots of, e.g.,
damage probabilities versus intensity measures.

Intensity measures have been studied extensivielyags shown that they must be efficient,
l.e., structural demand parameters conditional Mis khould have small variances, and
sufficient, i.e., the distributions of structuralrdages should be completely defined for given
IMs [1,7,8,9]. Efficiency and sufficiency are strong requirentsemwhich are rarely if ever
satisfied in practice.

We show that structural demand parameRerare weakly related to the ING, (T) so that
fragilities defined as conditional probabilitiesattD exceeds critical values give§, (T)

have large uncertainties. This means $4T) is not an efficient IM and that estimates of

seismic performance of structures based on fragglidefined in this manner are likely to be
unreliable.
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2 INTENSITY MEASURES

We assume that the seismic ground acceleraiphis a stochastic process with known
probability law and limit our discussion to intelysmeasures defined by single ordinate of

the pseudo-acceleration response spec@ﬁT ) . Under the assumption that the lawAdf)
is known, it is possible to calculate statistics){T) and structural demand parametBrs

exactly and assess the potentialSy{T) as indicators of site seismic hazard. It is recoegh

that the setting considered in this study is sonawdonstrained and cannot be extended
directly to actual ground motions. However, it go®s a theoretical framework for assessing
IMs which is beneficial to practice.

Various models can be considered for the seisnoargt acceleration procesgt). We use
the seismological model in [11] to characteri@). According to this modelA(t) is a
stationary Gaussian process with mean zero andrapdensity depending on site-to-source
distance, moment magnitude, and other physical npetexs which is modulated by a
deterministic function of time.

Suppose a model has been selected\(r Let X, (t) denote the displacement of a linear
single degree of freedom (SDOF) with natural peficahd selected damping ratio. The IM is

the largest displacement during the seismic evealed by the square of the oscillator natural
frequency, ie., the pseudo-acceleration response pectrsim

S(T)=(271T)" max., [X oy (t)‘ where 7 denotes the duration of the seismic event. Let

X(t) denote the response of an arbitrary structurabsy$oA(t). Generally, the system has a
large number of degrees of freedom so tRé) is a vector-valued stochastic process.
Moreover, X(t) is a hon-Gaussian process since structural systemmsot remain linear and

elastic during large seismic events. For simpljcitye consider real-valued demand

h(X (t))‘ , whereh mapsX(t) into a real-valued quantity of interest,

parametersD = max,,.,

e.g., an interstory displacement or a floor acedien.

The random variables, (T) andD are dependent since they are functionals of theesa

process, the seismic ground accelerafgt). Current fragilities analysis is based on the
hypothesis that the dependence betw&f(T) andD is sufficiently strong such that the

variance of the conditional random variati%sS, (T) is small. It is shown that this hypothesis

does not hold in the framework of this study, ailteshich question the usefulness of current
fragilities as tools for performance-based eartkquangineering. Concepts of the random
vibration and multivariate extreme value theoriese ased to quantify the dependence

betweensS, (T) andD.

3 RELATIONSHIPBETWEEN S,(T) ANDD

Suppose the seismic ground accelera#ig), O<t<t, is a stochastic process defined on a
probability space @,F,P). The structural demanB and the intensity measurg, (T) are

functionals of the seismic ground acceleration ess@\(t), see Eq. (1). The dependence
between the random variableg (T) and D cannot be obtained analytically even in our
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setting since, although the law of the seismic kecagon proces#\(t) is known, S, (T) and
D are maxima of filtered versions Aft), i.e., the stochastic process¥g,, (t) and X (t).
A(t) = Sructure= X (t)=> D = @gxh(x (t))‘

A(t) = SDOF = Xy (t) = S, (T) = (277/T)" max X (1))

o<st<r

1)

We note that the processeg,, (t) and X (t) and the random variable3, (T) andD are
defined on the same probability spacé@¥ as measurable mappings of it.

3.1 Intuition

Intuition suggests tha®, (T) andD are weakly dependent since they are maxima of/arg
different processes, a real-valued Gaussian process (t) whose most energy is

concentrated in vicinity off and a non-Gaussian vector-valued stochastic psoXe)

whose frequency content depends strongly on theepties of the particular structural system
under consideration and may be very different ftbmfrequency content oX (t) These

observations and the fact that processes which feavdrequencies in common are weakly
correlated suggest th&, (T) andD are weakly dependent.

That processes with different frequencies are ustaied results by simple arguments. For
example, IetY(t) be a real-valued weakly stationary process witlanmmeero and one-sided

spectral densitg(v), v=0. The processe¥, (t) and,(t) defined by the harmonics of(t)
in the frequency bandf0,7] and (7,) are uncorrelated since they admit the spectral

representationd,(t) j [codut)du(v) + sifut)av(v) | and Y, t T (v)+ sirfut)av(v) |

which imply E[Y,(s)Y,(s)]=0 since Y (t J'[cos(vt )du (v) + sin(vt)aV (v)] is the

spectral representation of (t), E[dU(v)dU(v')]=E[aV(v)aV(v')]=6(v-v')g(v)dv,
and E[dU (v)dV (v')]=0v v 2 0.

3.2 Correation

Translation processes have been proven useful ibraad range of applications in
wind/earthquake engineering and material scienqR Yet, they are not informative when
dealing with simultaneous extremes of dependerttammvariables, e.g., the random variables

S,(T) andD.

Let Y =(Y,,Y,) be a two-dimensional translation random vectorenety, = F o ®(G,),
k=1,2, {F,} are the marginal distributions of, ® denotes the distribution of the standard
Gaussian variabl&l(0,1), and {5} are correlated Gaussian variables with zero meants
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unit variances. Lejp = E[G,G,]| be the correlation oB, andG,. Generally, the correlation
betweenY, andY, is similar to that betweeB, andG, [4] (Chap. 3). The joint distribution of

the translation variable¥ =(Y,,Y,) can be given in the form
P(Y,<¥,Y, < ¥;) =P(Fe®(G) < y,F;'e@(G)<sy)=P(GsuG su) (2

for any thresholdsy} and their images {uk =®7oF, (zk)} , k=1,2, in the Gaussian space.

The correlation coefficient is an attractively simpbut crude metric of dependence
particularly when the interest is in simultaneoasgé values of random variables. For

example, the joint distributio® (G, < u,,G, < u,) of the Gaussian vectd(,,G,), [p|<1, can
be approximated b (u,) ®(u,) for sufficiently large levelsy} since

P(G <u,G,<u,) =@ (u)®(u,) - 0,u,U, - o 3)
by the normal comparison lemma [10] (Theorem 4.2ALkimilar statement holds for the

non-Gaussian image diG,,G,), i.e., P(Y, <y, Y,<y,)=F,(y,)F,(y,) for large §} and

correlation coefficientp|<1.
These considerations show that (1) the translatmuel is inadequate for the bivariate

random vectol(S, (T),D) if the interest is in simultaneous large valuesspfT) andD and

(2) metrics finer than correlation need to be usedetermine whether or not simultaneous
large values of5, (T) andD are dependent. Such metrics are considered next.

3.3 Multivariate extreme valuetheory

Our objective is to estimate the dependence betweeunltaneous large values ¥f= S, (T)
and Y, =D, i.e., determine whether structural demand pararsetan be predicted with
satisfactory accuracy from IMs such S§(T) particularly for large seismic events. Such

events are likely to cause structural damage arfdilure. We use tools of the multivariate
extreme value theory (MEVT) to achieve this objeti

Let {yi = (v yiyz)} i =1...,n, ben independent samples ¥f=(Y,,Y,) . They are calculated
from samples X, (t,w) and X(t,w) of the responses of linear SDOF and structural

systems subjected to independent samples a)) of the seismic ground acceleration process

A(t). Following is a heuristic presentation of MEVTncepts which are relevant to our
discussion.

I ndependent identically distributed components: SupposeY,,Y, >0 almost surely (a.s.) and
have the same distributions, i.E,=F,, which means that they have identical scalesolarp

coordinates, the bivariate vectér=(Y,,Y,) has the form

Y =(Y,Y,) =(V cog0) v sir(0)) (@)
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where V :||Y||:(Y12+Y22)]/2 and ©=tan™(Y,/Y,). Similarly, the samples of admit the
representation

Yi :(yi,llyi,z):(vi COS(Q) Vi S”(HI)) j=1.n (5)

with the notations in Eq. (4). SamplesYowith distances to the origin larger tha0 are of

interest since they correspond to component¥ wfich are simultaneous large. The value
used forv is critical to capture properties of the rightsaf Y, andY, [12]. If v, is too large,

only few samples will be available to estimate tependence between the right tailsYof
andY, so that the resulting estimates will have largeaveees. Ifv, is insufficiently large, a
significant fraction of samples used in the analysill be in the body of the distributions of
Y, andY, so that estimates of tail features will be unsattery.

Let {yil,...,yim} denote the subset dfy,,...,y,}, men, such thatv. >v,, j=1,...m, where
J

vi :Hyiju. The histogranin(6) of {al,...,em} corresponding to samples ¥6fwith norm larger

thanv,, referred to asingular measure, is used to characterize the dependence between th
simultaneous large values ¢f andY,. The support of this histogram isf2]. If most of the
mass ofh(B) is concentrated &=0 and1v2, it is unlikely thatY, andY, are simultaneous
large. In this case, simultaneous large value¥ aindY, are nearly independent. If most of
the mass oh(6) is concentrated at a particular valuedpft is highly probable that, andY,

are simultaneous large.

Let Y, =AGZ +(1-1)G/, k=1,2, whereG,, G, andG, are independent standard Gaussian
variables. ThenY, andY, are identically distributed, perfectly dependeat A=1, and
independent forA=0. The left panels of Fig. 1 show scatter plotstioé samples of
Y = (Yl,YZ) with norm larger than, extracted frorm=100000 independent samplesYofThe
top, middle, and bottom panels correspond+6.9, 0.5, and 0.1 and threshols16, 10,

and 12. The right panels show the correspondingilangneasures. They show that the
components oY are strongly and weakly dependentXef.9 and 0.1.

Arbitrary components: Generally, the component§ andY, of Y have different distributions

and scales, e.g., the random variab®&¢T) andD. If the marginal distributions of are

known, then its components and samples can bedstaleve the same properties so that the
previous formulation applies. In most applicatidghe marginal distributions of are not
know and there are insufficient samples to estirtteden. An alternative approach, referred to
as the ranks method can be used to construct ésirohangular measures as in Fig. 1. The
marginal distributions oY is not needed to implement this method. Samplééak ranked
and used to construct estimators of the angularsureawhich are used to quantify the
dependence between simultaneous large values eindY,, see [13] (Chap. 9) for the

theoretical framework of the ranks method and ¢Jifs application to seismic hazard.
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Figure 1. Sample with norms larger thej (left panels) and corresponding angular measuigs panels) for
(1,vo) =(0.916), (0.5,10), and (0.1,12) (top, middle, antidm panels)

4 DEPENDENCE OF S,(T) AND D

Suppose the seismic ground accelerafi@ihis a zero-mean Gaussian process with properties
given by the seismological model in [11]. Structuesponse(t) to A(t) are non-Gaussian
processes because of structures exhibit nonlinedwavior during seismic events. For
example, suppos¥(t) is the displacement of a nonlinear oscillator Branax__ [X(t)] is the

demand parameter. TheK(t) is a non-Gaussian process dndis the maximum of this
process. In contrast, the displacemefy,, (t) of a linear oscillator subjected #(t) is a

Gaussian process ari) (T) is its maximum. The differences between propexiexs(t) and
Xt (t) increase with the degree of nonlinearity/compiexaf structural systems and

earthquake intensity and so do differences betwi&4¢fi) andD.
Let X(t) be the displacement of a Bouc-Wen oscillator Whécdefined by
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X (t) +20voX (1) +V5 (oX (1) + (1- o)W (t)) = -A(t), where
W (t) = yX (t) - a|X (t)w (t)‘){_lw ()= BX ()W ()

v,>0, ¢0(0,1), @,B,y,p.x) are positive constants, a{t) denotes the seismic acceleration

(6)

process. The system is linear fis¥l. It nonlinear forp #1 and its behavior depends strongly
on the values df andy.

The following numerical results are fog=2m (=0.05,0=0.5, f=5, y=3, p=0.1, andx=1.
Samples of X, (t) and X(t) have been calculated fror=10000 independent samples of
A(t) and used to calculate the corresponding sam;bl@(d’) andD. The resulting samples

of the bivariate random vect<(rSa (T),D) have been used to estimate angular measures.
Calculations used the ranks method since the biistoins ofS (T) andD are unknown.

The left panel of Fig.2 shows the available sampl‘e(ssa (T),D). The circles indicate the

samples used to estimate the angular medg@)yeThe right panel shows this measure. Since
its mass is concentrated in small vicinitiesBsf0 andB6=172, simultaneous large values of
S,(T) andD are unlikely. This means that (1) the conditioraidom variableD|S, (T) and

the random variabl® have similar distributions so that the fragilitytbe Bouc-Wen system
under consideration is nearly independenSpfT) and (2) the response spectr8n(T) is
an unsatisfactory IM when dealing with large setsmvents since large values bfand
S,(T) are nearly independent.
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Figure 1. Samples c(fSa (T) D) and estimates of the angular mea${6 (left and right panels)

5 CONCLUSIONS
Fragilities are usually defined as probabilitieattistructural demand parameté&sexceed
critical values for given values of intensity me@su(IMs), e.g., response spec®a(T).

Plots of these conditional probabilities versus Ide essential tools of performance-based
earthquake engineering. Intuition suggests haind S, (T) are weakly dependent since
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these random variables are maxima of responsedsezrloscillators and complex nonlinear
structural systems to the seismic ground accetergtioces#\(t).
Concepts of the multivariate extreme value thedMeYT) have been used to estimate the

dependence betwedh and S,(T) under the assumption that the probability lawAd) is
known. It was found that the intuition regarding thependence @ and S, (T) is correct,
e.g.,D and S,(T) are nearly independent for the Bouc-Wen oscillatajected to large
seismic events. This suggests t@(T) is an unsatisfactory intensity measure so that the

usefulness of fragilities defined as functions3{T) is questionable.
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